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Abstract

This thesis examines human memory performance under influence of different in-
tensities of cognitive workload. A psychological experiment was conducted using
a recognition test and divided attention at encoding time. Two variations of the
switching task were used as secondary tasks. The experiment results contain sig-
nificant effects of different workload modes as well as significant effects within the
workload modes. Observed effects include differences between delayed and imme-
diate retrieval, between single and multiple encoding and between semantically re-
lated and semantically unrelated words. Based on the ACT-R declarative module
and LTMC , a model of human memory performance is devised, using WordNet as
database. This model tries to predict the observed effects by using the ACT-R base
level activation equation (for delayed vs. immediate retrieval and single vs. multi-
ple encoding) and a spreading mechanism (for semantically related vs. semantically
unrelated words). As the evaluation results show, the devised WorkloadMemory-
Model is capable of predicting the effects observed regarding response time, hit rate
and false alarm rate. Moreover, transferring a memory model to different workload
modes by modifying the model’s free parameters has proved to be a reasonable ap-
proach. Further research is advised, e.g. regarding the integration with other models
and systems.

Zusammenfassung

In dieser Bachelorarbeit wird die menschliche Gedächtnisleistung unter dem Einfluss
verschiedener kognitiver Auslastungsgrade untersucht. Hierzu wurde ein psycholo-
gisches Experiment durchgeführt, das einen Erkennungstest und geteilte Aufmerk-
samkeit während Lernphasen verwendet. Als Nebenaufgabe wurden zwei Varianten
des

”
switching task“ eingesetzt. Die Ergebnisse dieses Experiments beinhalten sowohl

signifikante Unterschiede zwischen den einzelnen Auslastungsgraden als auch singni-
fikante Effekte innerhalb der Auslastungsgrade. Die beobachteten Effekte umfassen
Unterschiede zwischen verzögerter und sofortiger Abfrage, zwischen einmaligem und
mehrfachem Lernen und zwischen semantisch zusammenhängenden und semantisch
unabhängigen Wörtern. Basierend auf dem deklarativen Modul der kognitiven Ar-
chitektur ACT-R und dem LTMC-Gedächtnismodell wird ein Modell menschlicher
Gedächtnisleistung entwickelt, welches WordNet als Datenbasis verwendet. Dieses
Modell versucht die beobachteten Effekte vorherzusagen, indem es die ACT-R Base-
Level-Aktivierung (verzögertes vs. sofortiges Abfragen, einfaches vs. mehrfaches Ler-
nen) und einen Spreading-Mechanismus (semantisch zusammenhängende vs. seman-
tisch unabhängige Wörter) verwendet. Wie die Evaluation dieses Modells zeigt, ist
es in der Lage die beobachteten Effekte bezüglich Reaktionszeit, Trefferrate und
Falschalarmrate vorherzusagen. Außerdem hat sich die Übertragung eines Gedächt-
nismodells in verschiedene Auslastungsgrade durch Anpassen der Modellparameter
als sinnvoller Ansatz erwiesen. Weitergehende Forschungsarbeiten werden empfoh-
len, beispielsweise bezüglich der Integration mit weiteren Modellen und Systemen.
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1. Introduction

In recent years, significant progress has been made in Human Computer Interaction
(HCI) with user interfaces becoming much easier to use. Researchers have become
interested in modeling the user’s internal state in order to enable their systems to
react appropriately to the user’s mood, level of stress, etc. One crucial influence on
the user’s performance is the current workload: As studies of cognitive psychologists
(e.g. Hart & Staveland, 1988 [1] and Bourne & Yaroush, 2003, [2]) have shown, users
perform more slowly and less accurately under high workload (e.g. if simultaneously
performing a secondary task). This thesis addresses the influence of cognitive work-
load on human memory performance. It extends the work of different psychologists
(e.g. Craik et al., 1996, [3]) by explicitly devising a cognitive model of human
memory performance (based on the declarative module of ACT-R) for predicting
response time and response quality (measured as hit rate and false alarm rate) un-
der different workload settings. This workload-sensitive memory model serves as
basic research. However, with continued research, the results from this thesis will
provide an opportunity for user interfaces to predict whether the user still remem-
bers previously presented information or whether this piece of information should
be presented again.

1.1 Purpose

The purpose of this thesis is to devise a workload-aware model of human memory
that can predict human memory performance in different workload settings. This
goal is basically achieved by combining existing models (the ACT-R declarative
module and LTMC) and using WordNet (a linguistic model of the English language)
as database. Using a large database like WordNet is more plausible than using only
directly task-relevant pieces of information: In the first case, human memory (which
can be considered to contain thousands of pieces of information) is modeled more
accurately and potential interference effects can be modeled better than in the latter
case (see Schultheis et al., 2006, [4] for a similar reasoning).

Prior to devising this model, a psychological experiment is conducted. This is done
for two reasons: On the one hand, real world data is needed for optimizing and
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evaluating the model. On the other hand, in order to develop a model that can
predict human memory performance, this performance must be analyzed beforehand:
The knowledge of the effects to model is necessary for modeling them.

As the ACT-R cognitive architecture has proved (see Anderson et al., 2004, [5]),
it is possible to devise good models of human memory. However, these models
generally do not take into account different workload settings. The most important
question to be answered by this thesis is the following: Can models of human memory
like the ACT-R declarative module be adapted to different workload settings by
modifying the model’s free parameters in a plausible way, or is it necessary to devise
completely or partially new models for human memory under workload? Moreover,
if different workload modes can be simulated by modifying the model’s parameters,
how do these parameter modifications influence the model’s behavior? This thesis
will address these questions by devising a model based on the ACT-R declarative
module and LTMC , by optimizing the model’s parameters for different workload
modes and by subsequently evaluating the optimized parameters and the model’s
predictions.

If the model devised in this thesis is combined with a workload recognition system
(e.g. Heger et al., 2010, [6]) and a workload-aware dialog system (e.g. Putze &
Schultz, 2009, [7]), a workload-aware user interface seems to be in reachable dis-
tance. Such a workload-aware user interface with the capability to predict the user’s
memory performance can be of use in situations where a user must make severe
decisions in a demanding environment. For example, consider an operator in an
emergency call center who has to decide under high pressure when to send how
many ambulances or fire trucks to which location. In this case, a system aware
of the operator’s workload level and how it affects the operator’s memory perfor-
mance can help the operator to make good decisions, for example by re-prompting
important information the operator might have forgotten due to high workload.

1.2 Structure

In chapter 2, existing approaches of modeling human memory and related work
regarding the influence of cognitive workload on human memory performance are
presented.
In chapter 3, a psychological experiment for measuring the influence of cognitive
workload on human memory performance is described: The methods are explained,
and the experiment’s results are presented and discussed.
In chapter 4, a model of human memory performance is devised which can handle
different workload modes. Furthermore, an overview of its implementation is given.
In chapter 5, the model devised in chapter 4 is evaluated by systematically trying
to reproduce the effects observed in the results of the experiment from chapter 3.
In chapter 6, this thesis is concluded by summarizing the key results and by listing
approaches for further research.



2. Principles

This chapter summarizes the principles regarding human memory modeling, cog-
nitive workload, memory tests and divided attention. It reviews related work and
describes relevant approaches.

2.1 Models of Human Memory

In his book ”Unified Theories of Cognition” (1990) [8], Newell lists several criteria
which characterize the human mind. If a cognitive architecture tries to mimic human
cognition processes, it has to meet this criteria to be considered human-like. One of
this criteria is the ability to store information persistently and the ability to retrieve
this stored information at a later point in time. To meet this criteria, cognitive
architectures must provide some model of human memory that provides ways of
storing (”memorizing”) and retrieving (”remembering”) information.

In general, two types of memory can be distinguished: short term memory (STM)
and long term memory (LTM). The memory span of STM is considered to be rather
short (usually less than a minute), whereas the memory span of LTM is considered
to be infinite. Moreover, the capacity of STM is considered to be relatively small,
whereas the capacity of LTM is considered to be nearly unlimited.

However, this distinction into STM and LTM is not accepted by all researchers:
Some declare working memory as a third type of memory and as an intermediate
stage between STM and LTM. Others (e.g. Cowan, 1988, [9]) propose the model
of one unified memory with STM being the part of memory where the attention is
currently directed to.

For the scope of this thesis, the possible division of human memory into STM and
LTM is not taken into account. Although the ACT-R declarative module and LTMC

explicitly model human LTM, the model devised in chapter 4 is not assigned to one
of those memory types, but is treated as a unified memory model.

Another distinction of human memory can be made regarding its content (see Squire,
1992, [10]): It can be distinguished into declarative memory and procedural memory.
Declarative memory contains explicit knowledge of facts (e.g. ”A book consists of
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Figure 2.1: This figure shows the ACT-R base level activation as a function of
time for three different values of d (0.2, 0.5 and 0.8). It is assumed that the chunk
corresponding to this base level activation was reinforced only once at t = 0.

pages.”) and events (e.g. what happened at your last birthday party), whereas pro-
cedural memory contains implicit memory of activities (e.g. how to ride a bicycle).
For the scope of this thesis, only declarative memory is considered.

In the following sections, three existing approaches of modeling human memory
are described: The ACT-R declarative module, the LTMC memory model and the
WordNet database. Note, that these approaches are closely related: For example,
LTMC was designed based on the ACT-R declarative module, and there have been
attempts to integrate WordNet into the ACT-R cognitive architecture (see Emond,
2006, [11]).

2.1.1 The ACT-R declarative module

This section refers to Anderson et al. (2004) [5], where the complete ACT-R
(Adaptive Control of Thought – Rational) cognitive architecture is presented, and
to the ACT-R 6.0 Reference Manual [12] and the ACT-R 6.0 Tutorial [13]. In
this section, only the ACT-R declarative module, which models human declarative
knowledge, will be discussed.

Information in ACT-R is represented in form of so called chunks. Each chunk has a
type and several attributes. The value of a chunk attribute can be either an atomic
value (e.g. an integer) or another chunk. Chunks are used to transfer information
between the different modules of the ACT-R cognitive architecture. The ACT-R
declarative module maintains a set of chunks that represent the current declarative
knowledge. Chunks can be inserted into the declarative module and they also can
be retrieved from it.

To model the effects of forgetting, a chunk can only be retrieved with a certain
probability. This probability decreases over time, if the given chunk is not reinforced
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again. In order to compute the retrieval probability, an activation value, which is
assumed to track log odds, is assigned to each chunk. This activation not only
determines the retrieval probability, but also the response time (which is the time
needed to successfully retrieve this chunk from the declarative memory).

For retrieval, the declarative module is provided with a chunk describing the in-
formation needed. The declarative module then searches for chunks fulfilling this
description and selects the chunk with the highest activation value amongst them
for retrieval.

The activation value is composed of three different summands: base level activation,
associative activation and noise activation.

Equation 2.1 defines the base level activation of a chunk i that was reinforced n
times, depending on the current time tc and the time of the k-th reinforcement tk.
The decay parameter d describes the rate of decay over time.

Bi = ln(
n∑
k=1

(tc − tk)−d) (2.1)

The base level activation rises with practice and declines over time (which simulates
forgetting). Figure 2.11 illustrates the base level activation of a chunk that has been
encoded at t = 0 as a function of time, using three different values for the decay
parameter. As it can be seen in the figure, a higher value of d causes a faster drop
of base level activation and is therefore associated with faster forgetting.

Another source of activation is the associative activation. The associative activation
is computed as in equation 2.2, where Wj reflects the attentional weight of element
j at the current point in time and Sji represents the association strength between
chunk i and element j.

Ci =
∑
j

WjSji (2.2)

Wj is usually set to 1/n with n being the number of activation sources. Sji is
usually set to S− ln(fanj) with fanj being the number of facts that are associated
to element j. The parameter S is often set to a value of 2 which has emerged as
reasonable value.

The third source of activation is the noise activation Ni. It is simply a random
variable following a logistic distribution with mean value 0 and variance σ2.

So the overall activation of a chunk in the ACT-R declarative module can be com-
puted as in equation 2.3 by simply summing up the three mentioned sources of
activation.

Ai = Bi + Ci +Ni = ln(
n∑
k=1

(tc − tk)−d) +
∑
j

WjSji + Logistic(0, σ2) (2.3)

1All figures in this thesis without an explicit reference were created by using OpenOffice.org
3.3.0, Dia 0.97.1 and Gimp 2.6.7.
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Figure 2.2: This figure shows the probability of retrieval as function of activation.
The probability of retrieval is illustrated for three different values of τ . The param-
eter s is alway set to 0.4 in this example.

As noted before, in the ACT-R declarative module, chunks can only be retrieved
with a certain probability. Equation 2.4 shows how the probability of retrieval is
computed:

Pi =
1

1 + e−(Ai−τ)/s
(2.4)

Chunks can only be retrieved if their activation value is greater than a specific
threshold value τ . The parameter s controls the sensitivity of the retrieval probabil-
ity against varying activation values and is usually set to 0.4. It also represents the
amount of noise in the system and has an influence on the variance σ2 of the noise
activation. Figure 2.2 illustrates equation 2.4 for three different values of τ and with
s = 0.4.

As stated previously, if a chunk is retrieved successfully, the ACT-R declarative
module also provides the latency of retrieval describing the delay between the request
and the retrieval of this chunk. It is computed by using equation 2.5 where Ai is
the activation value of chunk i and F is a latency factor.

Ti = F · e−Ai (2.5)

Although F is another free parameter, a general relationship exists between the
latency factor F and the retrieval threshold τ . It can be stated as F ≈ 0.35 · eτ .
This can be interpreted as the retrieval latency for Ai = τ being approximately 0.35
seconds.

However, equation 2.5 only holds if a chunk can be retrieved successfully. In case no
chunk matches the request or none of the matching chunks has an activation value
above threshold level, the failure latency is the time until this failure to retrieve is
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those similarities are taken into account during retrieval:
all chunks of the specified chunk type are considered and
the activation of those which do not perfectly match the
requested slot values will be decreased inversely propor-
tional to the similarity values between the differing slot
values. Although this mechanism allows ACT-R to account
for partial matching phenomena, it seems to be rather ad-
hoc and is not arising from the structure and general mech-
anisms of ACT-R’s LTM (cf. Altmann, 2000).

In summary, none of the three considered architectures seems
to realize a knowledge base modeling human LTM in a com-
pletely satisfactory manner. Therefore, LTMC which im-
proves on the existing realizations has been conceptualized
and implemented. LTMC and its evaluation will be presented
in the next section.

An Improved LTM
The objective in developing LTMC was twofold: first, LTMC

should be capable of representing human LTM in its entirety
and not just with respect to specific tasks. Second, LTMC

should improve on the existing models regarding cognitive
plausibility. To achieve both goals it seemed reasonable to
start from those aspects of existing LTM conceptions that
have proven to be valuable and replace just those aspects of
previous conceptions which the preceding analysis has iden-
tified as being problematic.
When comparing the three discussed cognitive architec-

tures, ACT-R’s LTM not only seems to be the most elaborate
one, but also has been most successfully applied to model-
ing human memory phenomena (cf. Anderson et al., 2004).
Moreover, the problems identified with this approach seem to
be mainly structural. The mechanisms realizing context de-
pendence and memory decay, namely base level activation,
spreading activation, and noise, seem to satisfactorily mirror
processes in human LTM. It is merely the chunk structure
of knowledge representation which seems to cause problems.
Consequently, LTMC realizes an advanced structure while at
the same time largely adopting the activation related mech-
anisms of ACT-R. In doing so, LTMC is able to resolve all
of the three problems associated with ACT-R’s LTM without
compromising those aspects of ACT-R’s LTM which seem to
be in accord with human LTM.

Structure
The basic building blocks of the new structure are nodes and
connections between them. Each node comprises a name, a
unique identifier, and one or more connections to other nodes.
The name of a node is a string and its main purpose is to indi-
cate which entity in the world a certain node stands for. The
unique identifier on the other hand serves rather a technical
function in allowing the system to address every single node.
As a third component of each node, connections establish
links to other nodes. Some of these links ensure the efficiency
of the technical realization by implementing a binary search
tree on all nodes in LTM whereas the other links represent as-
sociations between nodes in LTM. Since only connections of
the second type are of interest regarding psychological phe-
nomena, the following description will concentrate on those.
The links in LTMC generally bear no meaning other than to

establish associative connections between nodes. In particu-

London Parisnorth-of

Figure 1: Three nodes with two links representing the fact
that London is north of Paris.

lar, links do not constitute relations, but relations are also rep-
resented as nodes. As a result, there are essentially two kinds
of nodes in LTMC : object nodes representing objects (e.g.,
persons, buildings, countries, etc.) and relation nodes rep-
resenting relations between entities (e.g., north-of, has-color,
between, etc.). It is by linking these two types of nodes that
knowledge is represented in LTMC . For instance, the knowl-
edge that London is north of Paris would be represented as
depicted in Figure 1.
Representing relations as nodes has at least three advan-

tages: first, relations of differing arity can easily be accom-
modated in the same framework. Consider, for example, the
relation “between” which has arity three. If relations were
represented by connections, representing “between” would be
rather difficult, since every connection links just two nodes.
With relations as nodes however, “between” can be easily
represented by linking the corresponding relation node to the
three entities to be related. Second, relations as such can be
primed, i.e., the process of activation spreading takes into ac-
count not only the entities which are related, but also the re-
lations themselves. Third, by representing relations as nodes,
categories and subsumptions of categories for relations can
be built. For example, the knowledge that “north-of” is a “di-
rection relation” can be explicitly encoded.
Apart from knowledge about concrete entities LTMC also

contains information about classes or categories of entities.
One important aspect of the knowledge about categories is
their subsumption relations as in the above example of “north-
of” and “direction relation”. Since representing subsumption
relations as nodes would lead to infinite regress they are rep-
resented by connections, called isa-connections.
To sum up, the representation structure employed in LTMC

consists of object and relation nodes which are associatively
linked. Knowledge about entities is represented by associa-
tive links between the corresponding nodes. Moreover, the
representation structure supports organizing knowledge in a
subsumption hierarchy (i.e., an ontology) of categories and
concrete instances. Thus, the representation of knowledge in
LTMC roughly takes the form of a tree with the most general
entity as the root and concrete instances as the leaves (see
Figure 2).

Processes
Retrieval of information from LTMC is activation-based.
Like in ACT-R, every node has an activation value which is
the sum of the base level activation of the node, the activa-
tion spread to that node, and some randomly varying activa-
tion (i.e., noise). On every retrieval request, the activation
of each node, starting out at 0, is computed in the follow-
ing way: first, elements currently in context (i.e., in working
memory or in the environment) increase the activation of cor-
responding nodes in LTM. If, for example, a person is asked
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Figure 2.3: Example for LTMC : The three nodes linked by two edges represent the
knowledge that London is north of Paris (taken from Schultheis et al. (2006) [4])

signaled. According to the ACT-R Tutorial [12][Unit 4] , it can be computed by
using equation 2.6:

Ti = F · e−τ (2.6)

If encoding and responding are involved (e.g. when reading a word, then trying to
remember this word and finally pushing a button to indicate that the word is known),
the overall recognition time (measured as delay between beginning of the encoding
and the actual response) can be computed by adding an additional parameter I to
the retrieval latency as defined in equation 2.5 and to the failure latency as defined
in equation 2.6, respectively. This parameter I is the intercept time and reflects the
time needed to encode the item and to perform a response. The recognition time
can then be computed as in equation 2.7.

recognition time = I + Ti (2.7)

As described in Anderson et al. (2004) [5] and in Schultheis et al. (2006) [4],
the ACT-R declarative module can be used in a broad range of applications and
provides good predictions of average human memory performance. However, ACT-
R is generally not capable of predicting differences between individuals or caused by
different conditions.

2.1.2 LTMC

Schultheis et al. (2006) [4] evaluated the long term memory (LTM) modules of
different cognitive architectures, including the ACT-R declarative module. They
find that the ACT-R approach is the most promising one, but they also note that
there is still potential for improvement. For example, they criticize the inflexible
chunk structure used by the ACT-R declarative module: The chunk type (which is
preset by the modeler) determines how retrieved information is grouped. Moreover,
only chunks completely fulfilling the chunk description can be retrieved, so partial
matching (i.e. retrieving a piece of information that does not completely fulfill the
description) is not possible.

To resolve these shortcomings of the ACT-R declarative module, Schultheis et al.
propose an improved memory model for cognitive architectures, called LTMC .

In LTMC , the atomic memory elements are not chunks, but nodes. Each node has
a name and one or more edges linking it to other nodes. These links theirselves do
not establish relations – relations are also represented as nodes. See figure 2.3 for an
example, how relations between two nodes are encoded in the LTMC memory model.
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It can be easily seen that there are two types of nodes: object nodes (e.g. ”London”)
and relationship nodes (e.g. ”north-of”). This allows for example to easily encode
that one object is between two others, by having a ”between” relationship node that
is connected to three object nodes. If relations were represented by edges and only
object nodes were used, the representation of this fact would be more difficult since
edges can only connect two nodes.

Moreover, an is-a relation for establishing hierarchies (”dog – is-a – mammal – is-a
– animal” or ”north-of – is-a – direction relation”) is available. This is-a relationship
is not represented as a node, but as a special isa-connection (which in principle is
a special kind of edge) to avoid infinite regress (which would occur when this is-a
relation was also represented as node).

As in ACT-R, every node has an activation value composed of base level activation,
spreading activation and noise activation. Base level activation and noise activation
are computed using the same equations as in ACT-R.

To calculate the spreading activation, the following steps are executed:

• First, the spreading activation of all nodes is set to zero.

• Second, nodes representing elements of the current context are stimulated,
i.e. their activation is increased. If for example a person is asked to give
the direction relation between the two cities London and Paris, the nodes
”London”, ”Paris” and ”direction relation” are stimulated. The amount of total
stimulation activation is fixed an is equally distributed among the stimulated
nodes.

• Third, the inserted stimulation activation is spread to neighboring nodes via
the link edges. Let f iact be the activation node i has received (either by the
initial stimulation or by spreading from another node). This activation is
added to this node’s current activation value. Then, a fraction of f iact is spread
to all neighboring nodes. Each of the neighboring nodes will receive an equal
amount of activation of f iact/m, with m being the number of neighbors of the
current node i.

Spreading direction is constrained by the following rule: Activation that has spread
upwards in the hierarchy (following a isa-connection) is not allowed to spread down-
wards again and vice versa. Spreading stops, when the amount of activation to
spread falls under a specific threshold value. Schultheis et al. set this threshold
value to Scontext · 10−4, with Scontext being the amount of overall context stimulation
that has been inserted into the model.

After the spreading activation is computed, base level activation and noise activation
are added to each node’s spreading activation to get the overall activation value.

As in ACT-R, only nodes with an activation value greater than a certain threshold
can be retrieved. This threshold value is defined as the average activation value of
all nodes currently in the memory model. Moreover, retrieval results consist of a
subset of connected nodes – neither all nodes with activation above the threshold
nor only the node with the highest activation are retrieved. A retrieval result must
be a set of nodes Sn containing a path (i, i+ 1, i+ 2, · · · , j − 1, j) for every pair of
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Figure 2. Network representation of three semantic relations
among an illustrative variety of lexical concepts
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Figure 2.4: This figure illustrates the concept of the different WordNet pointer types.
Taken from Miller (1993) [15].

nodes i, j ∈ Sn. The retrieval result is the subset with the highest overall activation
amongst the sets of nodes fulfilling this criteria.

2.1.3 WordNet

This section refers to Miller et al. (1993) [14] and Miller (1993) [15].

WordNet is a lexical database for the English language which has been developed at
Princeton University. WordNet contains a large number of nouns, verbs, adjectives
and adverbs, all grouped into sets of synonyms called synsets. For the scope of this
thesis, only nouns are considered.

Each synset represents one concept. It consists of a list of words and has a unique
identifier. Each synset has also a short descriptive sentence. Words having more
than one meaning appear in different synsets. For example the noun ”table” belongs
to six different synsets. Two of them are {table, tabular array} (description: ”a
set of data arranged in rows and columns”) and {table} (description: ”a piece of
furniture having a smooth flat top that is usually supported by one or more vertical
legs”).

Synsets are connected with other synsets via semantic pointers. The relations
between noun synsets include hypernymy/hyponymy (”is-a” relation), meronymy/
holonymy (”has-a” relation) and antonymy (”opposite-of” relation). Table 2.1 shows
a description and an example for each of the five pointer types. Hypernymy and
hyponomy are inverse relations which means that ”x is a hypernym of y” implies ”y
is a hyponym of x” and vice versa. This also holds for meronymy and holomymy.
Both hypernymy/hyponymy and meronymy/holonymy are asymmetrical and tran-
sitive, whereas antonymy is symmetrical and not transitive. Figure 2.4 illustrates
the different pointer types hypernymy, meronymy and antonymy.

By using hypernymy, a hierarchy of noun synsets can be constructed. Note that this
hierarchy is not a tree since it is possible for a word to have multiple hypernyms. In
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WordNet Pointer Types Between Noun Synsets
Pointer type Description Example

Hypernym Synset x is a hypernym of
synset y if ”a y is a kind of x”
is true

{tree} is a hypernym of {maple}
since ”a maple is a kind of tree”.

Hyponym Synset x is a hyponym of
synset y if ”an x is a kind of
y” is true

{maple} is a hyponym of {tree}
since ”a maple is a kind of tree”.

Meronym Synset x is a meronym of
synset y if ”an x is a part of
y” is true

{stem} is a meronym of {tree}
since ”a stem is a part of a tree”.

Holonym Synset x is a holonym of synset
y if ”an x has a y (as a part)”
is true

{tree} is a holonym of {stem}
since ”a tree has a stem as a part”

Antonym Synset x is an antonym of
synset y if ”x is the opposite
of y” is true

{defeat} is an antonym of {vic-
tory} since ”defeat is the opposite
of victory”

Table 2.1: This table explains and illustrates the five WordNet pointer types regard-
ing noun synsets.

this hierarchy, a hyponym is assumed to inherit all attributes from its hypernym and
to add at least one feature that distinguishes this hyponym from its hypernym and
all other hyponyms of its hypernym. For example, a {maple} inherits its attributes
from its hypernym {tree}, but it can be distinguished from all other types of trees
(i.e. all other hyponyms of its hypernym) by the color of its wood etc.

Because of its graph structure (if the synsets are considered as nodes and the re-
lationship pointers between them are considered as edges), WordNet is suited for
being the database of a node-based memory model if the memorization of words is
of interest.

2.2 Memory Tests

A plethora of tests are available to test a participant’s memory performance. Al-
though they differ significantly in many aspects, they share some common principles.
This section will describe these common principles and will then present two memory
tests in more detail: the California Verbal Learning Test (CVLT) and the Hopkins
Verbal Learning Test (HVLT).

2.2.1 Common Principles

In general, memory tests try to measure the performance of declarative memory.
This is usually achieved by presenting the participant a specific number of stimuli
(e.g. words or images) for memorizing and then testing how many of these stimuli
can be recalled.

Usually, a memory test consists of several encoding phases and retrieval phases.
Stimuli are presented for learning during encoding phases and the participant is
asked to retrieve them during retrieval phases.
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Three main types of retrieval techniques can be distinguished: free recall, cued recall
and recognition test.

• In free recall, the participant is asked to recall as many stimuli as possible
without presentation of any hints. Usually, a time limit is set for free recall.
An example would be a participant who has learned the words {tree, dog,
train, air} and is asked to reproduce as many words as possible.

• In cued recall, the stimuli are learned in pairs with one being the cue stimulus
and the other one being the target stimulus. During retrieval, the cue is
presented and the participant has to recall the associated target. An example
would be a participant who has learned the word pairs {tree - dog, train - air}
and is asked to reproduce the target word for the cue word tree.

• In a recognition test, the participant is faced with a yes/no question: During
retrieval, again stimuli are presented and the participant is asked to decide
whether he/she recalls the presented stimulus. An example would be a partic-
ipant who has learned the words {tree, dog, train, air} and is asked whether
train is one of the words learned before.

Using a recognition test has the advantage that due to its simplicity, the participant’s
response can be easily recorded (e.g. by logging key presses). On the other hand,
because the stimulus is presented again, another reinforcement takes place which
possibly biases the results.

Free recall has the advantage that no further reinforcement takes place and so the
probability of the results being biased is relatively low. On the other hand, since
free recall leaves much freedom to the participant in reproducing the stimuli, the
participant’s responses are usually harder to record and to compare. Especially
exact timings cannot be obtained easily.

Cued recall is somewhere in the middle between free recall and recognition: There is
some further reinforcement due to the presentation of cues, but not as intensive as
during a recognition test. Moreover, cued recall allows to test for associative memory
since participants not only learn stimuli but also associations between those stimuli.

For evaluating a participant’s performance, the accuracy (percentage of correct an-
swers) can be computed. In general, recognition has the highest accuracy whereas
free recall has the lowest accuracy. This is probably caused by the level of further
reinforcement as mentioned above.

2.2.2 The California Verbal Learning Test

The California Verbal Learning Test (CVLT) is a widely accepted test of human
declarative memory, regarding memorizing of words. In Delis et al. (1991) [16], the
CVLT is described in the following way:

The CVLT involves the oral presentation of two “shopping” lists (Lists A
and B) of 16 words each, with four words each from four semantic cate-
gories. Words from the same category are never presented consecutively,
which affords an assessment of the degree to which an examinee uses a
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semantic clustering strategy. Immediate free recall of List A is measured
for each of five consecutive learning trials. The next trial involves the
presentation and immediate free recall of the interference list (List B),
followed by“short-delay” free and category-cued recall of List A. Nonver-
bal testing is then administered for 20 min, followed by the “long- delay”
free and category-cued recall trials of List A. A yes/no recognition test
of List A is then administered.

As the description shows, the CVLT uses all three types of retrieval techniques: free
recall, cued recall and recognition test. In this case, cued recall is not implemented
by asking the participant to memorize pairs of words, but rather by giving the
category name as a cue. For example, for the words ”vest”, ”sweater”, ”jacket” and
”slacks”, the cue would be ”cloths” as they all belong to this category. Note that
learning and retrieving List B is used as a distractor task to establish some delay
between learning of List A on the one side and its ”short-delay” free recall and its
category-cued recall on the other side. Moreover, the nonverbal testing is used as
a distractor task, so the performance of long term memory can be tested by the
following recall phases.

2.2.3 The Hopkins Verbal Learning Test

Another interesting memory test is the Hopkins Verbal Learning Test (HVLT) which
is described in Brandt (1991) [17]:

Each form of the Hopkins Verbal Learning Test (HVLT) consists of a
12-item word list, composed of four words from each of three semantic
categories (see Appendix). The subject is instructed to listen carefully
as the examiner reads the word list and attempt to memorize the words.
The word list is then read to the subject at the approximate rate of one
word every 2 s. The patient’s free recall of the list is recorded. The same
procedure is repeated for two more trials. After the third learning trial,
the patient is read 24 words and is asked to say “yes” after each word
that appeared on the recall list (12 targets) and “no” after each word
that did not (12 distractors). Half of the distractors are drawn from the
same semantic categories as the targets (related distractors) and half are
drawn from other categories (unrelated distractors).

The word categories used in the HVLT are based on Battig & Montague (1969) [18],
using the two most commonly given responses as semantically related distractor
words to four other words chosen from this category. For example, for the category
”four-legged animals”, the two most commonly given responses are ”dog” and ”cat”,
so these responses are chosen as semantically related distractor words. Moreover,
four target words are chosen from this category: ”lion”, ”horse”, ”tiger” and ”cow”.

As the above-noted description of this test shows, two different retrieval strategies
are used: free recall and recognition test. According to Brandt (1991) [17], two of
the main advantages of the HVLT are its short duration and its retestability: The
HVLT can be completed in about ten minutes, whereas other memory tests (e.g.
the CVLT) take much longer time. Moreover, six equivalent forms of the HVLT
are given (containing each different word sets), so subjects can be tested more than
once with the HVLT without unintended learning effects.
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2.3 Cognitive Workload

Workload is the amount of mental effort currently put on a human’s mind. Hart &
Staveland (1988) [1] define workload as

a hypothetical construct that represents the cost incurred by a human
operator to achieve a particular level of performance.

However, they admit that different individuals may define workload in different ways:

The amount of ”work” that is ”loaded” on them, the time pressure under
which a task is performed, the level of effort exerted, success in meeting
task requirements, or the psychological and physiological consequences
of the task represent the most typical definitions.

As these list of example definitions shows, workload is experienced differently by each
individual, so it is hard to find an objective rating function or a general definition.
However, in order to measure workload, it is necessary to find a common ground.

As Hart & Staveland state, workload can have different sources, e.g. time pressure,
frustration and task difficulty. Some models of human cognition divide the process of
cognition into different processing stages with each of them having access to different
resources. One common view on cognitive systems divides the process of cognition
into perception, cognition and response (see Craik, 1943, [19]). According to this
division, the following types of workload can be distinguished:

• Perceptional workload: Workload of perception which can be further di-
vided into visual workload, acoustical workload, etc. Perceptional workload
depends e.g. on the number, rate and intensity of presented stimuli.

• Cognitive workload: Workload of internal mental thinking processes, de-
pending e.g. on task complexity.

• Physical workload: Workload of physical response, depending e.g. on rate
and complexity of physical response actions.

For the scope of this thesis, only cognitive workload is considered.

There are basically three ways of measuring a participant’s cognitive workload:

• Subjective criteria:
The participant is asked to report the perceived amount of workload. This
can be supported by questionnaires especially designed for this purpose. One
example is the NASA Task Load Index (TLX) developed by Hart & Staveland
(1988) [1]: Participants are asked to report the perceived mental demand, the
perceived physical demand, their frustration level etc. Participants have to
provide a rating between 0 and 100 for each of the categories, and additional
questions assemble a weighting of these categories. The TLX is then computed
as weighted sum of the category scores. Using standardized tests to measure
subjective criteria gives measures which are well comparable. However, this
approach is very time-consuming.
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• Physiological correlates:
The experimenter measures physiological parameters and tries to conclude
about the participant’s workload state. Such physiological parameters are for
example heart rate, skin conductivity or brain activity. So for example, at a
high workload level the heart rate is usually higher than at a low workload level.
However, a high heart rate does not directly imply a high workload level since
other reasons might also lead to a high heart rate. Because of this, multiple
physiological parameters should be measured to avoid false conclusions.

• Performance:
As workload influences human behavior, performance parameters like error
rate and response time also depend on the current workload. So by measuring
these performance parameters, the experimenter can again make a guess about
the participant’s workload state. But again, a high error rate might be caused
by high workload or for example by misunderstanding the task. So relying
on performance parameters for measuring a participant’s workload level also
involves the thread of making false conclusions.

Of course, these three approaches can be combined, e.g. by measuring a participant’s
heart rate and skin conductivity in combination with an analysis of the participant’s
response time. By combining different approaches, the workload estimations should
become more accurate because using different sources will stabilize the results. This
holds since different approaches have different strengths and weaknesses (e.g. the
probability of being influenced by some unrelated effect), and combining different
approaches means combining their strengths and trying to eliminate their individual
weaknesses.

2.4 Divided Attention
One way of increasing a participant’s workload is the concept of divided attention:
Instead of only executing one task, the participant is asked to execute two tasks
concurrently. One of them is called the primary task, the other one the secondary
task. Usually, performance in the primary task is of interest to the researcher,
whereas the secondary task’s only purpose is to increase the workload level. By
varying the secondary task (e.g. in complexity or in time demands), the experimenter
can vary the participant’s workload level.

If the interest is only on cognitive workload, the two tasks should be designed in a
way that there are no modality conflicts in perception and response. For example,
if both tasks require the participant to read a word presented on a screen, this
will result in higher perceptual workload than a scenario in which one tasks has
visual input and the other one has auditory input (confer multiple resource theory
by Wickens, 1984, [20]). When cognitive workload is measured, high perceptual or
physical workload should be avoided due to their potential influence on the measured
variables.

The focus of this section is on the paper of Craik et al. (1996) [3] that investigated
similarities and differences between encoding and retrieval under divided attention.

Craik et al. conducted four experiments that contained learning and retrieval of
words or word pairs. Encoding and retrieval were either performed under full atten-
tion or under divided attention (DA). Under DA, participants had to perform also a
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secondary continuous reaction time (CRT) task. For the CRT task, four horizontally
arranged boxes were presented on a screen. An asterisk appeared in one of these
boxes and participants had to hit the corresponding key. When the correct key was
pressed, the asterisk moved randomly to one of the other three boxes. The CRT
task used visual stimuli for perception and manual responses, whereas the memory
task used auditory stimuli and verbal responses. Between each subsequent encoding
and retrieval phases, participants performed an arithmetic distractor task by adding
3 to auditory presented digits. This was done to eliminate effects of recency (which
would be the participant repeating the words by using his/her ”inner voice”).

As Craik et al.’s results showed, DA at encoding time led to a marked drop in
memory performance and only to a minor rise of response time (RT) in the CRT
task. However, DA at retrieval had only a minor effect on memory performance,
but caused a notable rise in RT of the CRT task.

Moreover, Craik et al. investigated the effects of task emphasis: Participants were
either told to focus primarily on the memory task, to focus primarily on the CRT
task, or to assign equal importance to both tasks. The results show that emphasis
had a significant influence on RT for both encoding and retrieval: If the CRT task
was emphasized, its RT was lower than in case of emphasis on both tasks or on the
memory task. However, emphasis only affected memory performance under DA at
encoding time with more emphasis on the memory task leading to better memory
performance. Under DA at retrieval, memory performance under the three emphasis
settings did not differ significantly.

Craik et al. also examined differences between the three retrieval techniques free
recall, cued recall and recognition test. As they found out, free recall performance is
impaired most by divided attention and performance in a recognition test is impaired
least. Furthermore, DA at retrieval does not reduce memory performance at all if
a recognition test is used as retrieval technique. These results are in line with their
expectations since a recognition test is considered to provide most retrieval support
(by representing the stimuli) in contrast to free recall which is considered to provide
least retrieval support (none at all).

As the results from Craik et al. (1996) indicate, encoding is more vulnerable to DA
than retrieval. This contrasts with the common opinion which considers encoding
and retrieval to be very similar. Craik et al. state that this common opinion suggests

that memory encoding processes consist essentially of operations whose
primary functions are to perceive and understand external events, and
that memory retrieval processes reflect efforts to reinstate the same pat-
tern of mental and neural operations that existed at the time of the
initial experience.

However, their results indicate that encoding requires attention and retrieval is a
rather automatic process.

On the other hand, Fernandes & Moscovitch (2000) [21] report marked effects of
DA at retrieval on memory performance if the secondary task is sufficiently similar
to the primary task. For example, when the primary task consisted of learning and
retrieving lists of words, the magnitude of effect of a word-based secondary task
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was significantly larger than the magnitude of effect of a digit-based secondary task.
However, this was only the case during retrieval – under DA at encoding time, both
secondary tasks led to an impairment of memory performance of similar size. Fer-
nandes & Moscovitch conclude that during retrieval, primary and secondary task
compete for some common specialized resources (e.g. word-specific representational
systems), whereas during encoding they compete mainly for general attentional re-
sources.

There is a plethora of research in the field of divided attention which can not be
covered in detail here. However, one interesting effect is reported by Logie et al.
(2007) [22] who examined age related effects of DA: As their results show, DA at
encoding time had more effect on memory performance of old participants than on
memory performance of young participants. Moreover, the RT of old participants
was significantly slower than the RT of young participants.

As the examples listed above show, divided attention is a practicable way of increas-
ing a participant’s workload, and moreover, it notably influences a participant’s
memory performance.
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In order to examine the influence of cognitive workload on declarative memory per-
formance, an experiment was designed that used divided attention as a method for
creating cognitive workload. Divided attention was used at encoding time and a
recognition test was used as retrieval technique.

3.1 Method
A psychological experiment was conducted in which participants were asked to per-
form the following memory task:

A list of nouns was presented one by one on the screen at a pace of 1.5 seconds per
word with a short break of 0.5 seconds (blank screen) between the presentation of
two words. The participants were told to memorize these words.

As a distractor task, participants had to count backwards in threes from a random
three-digit number presented on the screen (e.g. with 328 presented, participants had
to count: 328, 325, 322, 319, ...). This distractor task was adopted from Fernandes
& Moscovitch (2000) [21]. After 20 seconds, participants were disrupted by an audio
signal. Participants were told to count as far as possible without being inaccurate.
Since the single purpose of this task was to eliminate recency, no recordings were
made.

In the following recognition test, a list of eight nouns was presented on the screen
one by one and the participants had to decide for each word whether they had
learned it before. If they remembered the word, they had to press “Y”, otherwise
they had to press “N”. Participants were told to respond as fast and as accurately
as possible. After pressing “Y” or “N”, the next word appeared on the screen. Both
response time and response correctness were recorded. Half of the presented words
were target words, which had been learned before, the other half were distractor
words. Participants were not told how many target words there would be in the
recognition test. Each word (both targets and distractors) was retrieved only once
during the whole experiment to avoid unintended learning effects.

These three steps (learning – distractor task – retrieval) were repeated six times,
forming a block. Before each learning and retrieval phase, a short informational
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message was presented for five seconds. After each retrieval phase within a block,
there was a break of ten seconds.

Each block used a word list containing 54 words (24 target words, 24 distractor words
and 6 filler words that were learned but never retrieved). The first four learning
phases of a block consisted of eight words, the last two learning phases of a block
consisted of five words. There were no retrievals across blocks, and participants were
told so. All words used in this experiment were German nouns with a mean length
of 5.82 letters (SD: 2.99, range: 2-12) and a mean number of syllables of 1.89 (SD:
0.48, range: 1-4). See appendix A.1 for a list of all words used in this experiment.

Half of the 24 words learned during a block were presented for learning only once,
half of the words were presented in two subsequent learning phases (“reinforcement”
property). Half of the words learned during a block were presented in the retrieval
phase right after they had been learned, half of the words were presented with a
delay of one retrieval phase (“gap” property). Half of the 48 words retrieved in each
block were so called “cluster words”: There were four clusters per block and each
cluster consisted of six semantically related words (e.g. cat, dog, cow, horse, lion,
tiger). Half of the words of each cluster were used as target words, half of them were
used as distractor words. The clusters and their words were taken from Battig &
Montague (1969) [18].

The three dimensions “cluster” (cluster words vs. singleton words), “reinforcement”
(word learned once or twice) and “gap” (direct retrieval vs. delayed retrieval) were
counterbalanced, so that all cells (e.g. cluster words that were reinforced twice and
retrieved without a gap) were of equal size. Assignment of words to the “cluster”
property was given a priori. For each participant, words were assigned randomly to
the property “target” (word to learn or distractor word), and in case of a target word
they were assigned again randomly to the properties “reinforcement” and “gap”. See
appendix A.2 for a detailed description of a block’s structure.

To induce different workload levels, two secondary tasks based on the ”switching
task” were used, similar to those mentioned in Monsell (2003) [23]:

In the “easy digit task”, a randomly chosen sound file, containing a digit, was played
concurrently with each word appearing on the screen during a learning phase. Par-
ticipants were asked to report verbally for each digit, whether it was “large” or
“small”. A digit was considered to be “large”, if it was greater than or equal to 5,
and “small” otherwise. Participants were asked to report their answer as accurately
as possible before the next word was presented on the screen and the next sound
file was played. Participants were told that the memory task and the easy digit task
were of equal importance.

In the “difficult digit task”, again a randomly chosen sound file, containing a digit,
was played concurrently with each word appearing on the screen during a learning
phase. Participants were asked to report verbally alternating whether the digit was
“large” or “small” and whether the digit was “odd” or “even”. They were asked to
start with the “large/small” decision. For example for the digit sequence “three”,
“eight”, “nine”, “one”, the correct responses would have been “small”, “even”, “large”,
“odd”. Again, participants were asked to report their answer as accurately as possible
before the next word was presented on the screen and the next sound file was played.
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Figure 3.1: This figure illustrates the concurrent performance of both the memory
tasks (words to memorize presented on the screen) and the difficult digit task (digits
to classify presented auditory by playing sound files).

Participants were told that the memory task and the difficult digit task were of equal
importance.

Figure 3.1 illustrates how difficult digit task and memory task are performed con-
currently.

Both secondary tasks were designed to avoid modality conflicts with the memory task
in perception and response: In the memory task, stimuli were presented visually and
responses were made manually, whereas in both digit tasks, stimuli were presented
auditory and responses were made verbally. Since the memory task operated on
words, both secondary tasks were designed to operate mainly on digits to avoid
conflicts in verbal memory. However, since both memory task and secondary tasks
require cognitive resources, cognitive workload should arise. An audio recording was
made in order to analyze the verbal responses in the secondary task.

In this experiment, three workload modes can be distinguished:

• In workload mode None, participants performed solely the memory task.

• In workload mode Low, participants performed the memory task and the easy
digit task concurrently with equal importance assigned to both tasks.

• In workload mode High, participants performed the memory task and the
difficult digit task concurrently with equal importance assigned to both tasks.
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Experiment
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Figure 3.2: Overall experiment structure (training blocks omitted for simplicity). In
this example, “car” is a cluster word that is reinforced twice and retrieved without
a gap (another word of the same cluster is “bike”). “boy” is a singleton word that is
reinforced once and retrieved with a gap. When denoting workload modes, N stands
for workload mode None and H stands for workload mode High.

There were nine blocks in total: three training blocks at the beginning (one of each
workload mode) and six test blocks (two of each workload mode). Only data from
the test blocks was analyzed. Between two subsequent test blocks there was a break
of 90 seconds.

Training blocks were shorter than test blocks: They contained four learning and
retrieval phases. Three of the learning phases consisted of five words and the last
one consisted of three words. All retrieval phases contained five words, three of them
target words and two of them distractor words. Breaks between two subsequent
training blocks were 60 seconds long.

Figure 3.2 shows the overall structure of the experiment (with training blocks omit-
ted for simplicity).

Order of underlying word lists and order of workload modes were counterbalanced
across participants for test blocks. The order of workload modes was constrained by
the following two restrictions: Two subsequent blocks had to be of different workload
modes and both halves of the test blocks had to cover all three workload modes.
See appendix A.3 for more information on the counterbalanced design. The training
blocks were identical for all participants.

Participants were not allowed to speak during the experiment, except when per-
forming the distractor task or when performing the easy or the difficult digit task.
Speaking was also allowed in breaks between blocks.

The experiment itself took about 65 minutes and was conducted with 24 participants
(mean age: 20.75 years, SD: 3.37, range: 15 – 29). 17 of them were male (mean
age: 20.24 years, SD: 2.88, range: 15 – 28), 7 of them were female (mean age: 22.00,
SD: 4.32, range: 16 – 29). A majority of 17 of them were students, 4 of them were
trainees and 3 were young professionals. Per participant, for each cell (e.g. cluster
words that were reinforced twice and retrieved without a gap in workload mode
None) a total number of 6 data points was recorded.
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The experiment was run on a MacBook Pro 13” (Intel Core 2 Duo 2.26 GHz, 2
GB RAM) using the PsychoPy framework (see Peirce, 2007, [24] and Peirce, 2009,
[25]). See appendix B.1 for more information on the scripts used for conducting this
experiment.

3.2 Results

The main questions to be answered by the results of this experiment are the follow-
ing:

• Is there a general impact of workload on human memory performance?

• Are there effects of learning by repetition and effects of decay?

• Can any differences be observed between semantically related and semantically
unrelated words?

• Can the arising effects be observed in all workload modes?

• Do the aspects listed above interact in some way or are they independent?

• Is there a relationship between response time and response quality?

The data gathered during the experiment was analyzed using the statistical toolkit
R. Three dependent variables were examined: response time, hit rate and false alarm
rate. Moreover, accuracy was computed from hit rate and false alarm rate and was
also analyzed.

• Response time (rt) was measured as time difference between the presentation
of a word and the participant’s keystroke, and is given in seconds.

• Hit rate (hit) was calculated on target words as fraction of correct responses,
and is given as fraction.

• False alarm rate (fa) was calculated on distractor words as fraction of incorrect
responses, and is given as fraction.

• Accuracy (acc) was defined as ”hit rate - false alarm rate” (as in Craik et al.,
1996, [3]), and is also given as fraction. Note that the expected accuracy of
random guessing is zero.

The following dimensions were analyzed:

• Reinforcement : Was the word presented for learning once or twice?

• Gap: Was the word retrieved directly after the last reinforcement or was it
retrieved with a gap?

• Cluster : Was the word a cluster word or a singleton word?

• Target : Was the word a target word or a distractor word?
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• Correctness of Response: Was the participant’s response correct or not?

• Age: Was the participant older than 20 years or not?

• Gender : Was the participant male or female?

• Block : In which block was the word learned and retrieved?

• Word List : To which word list did the word belong?

The results regarding the following dimensions are not included in this section:

• Age: All participants were between 15 and 29 years old. Due to this limited
range of age, the results obtained from this dimension can hardly be general-
ized. Moreover, the participants’ age was not equally distributed in this range.
Since the observed effects are therefore not reliable, they were neglected for
the purpose of this thesis.

• Gender: Since 17 participants were male and only 7 participants were female,
the results from analyzing the gender dimension are not reliable due to the
different sizes of the two groups. So also the results for analyzing the gender
condition were neglected for the purpose of this study.

• Block: Due to the counterbalanced experiment design, any effect of block
will leave all other dimensions unaffected, so also this dimension was omit-
ted. Moreover, modeling possible effects of fatigue that could be observed by
analyzing the block dimension would be beyond the scope of this thesis.

• Word List: Again, due to the counterbalanced experiment design, any effect
of word list will leave all other dimensions unaffected. Since analyzing the
word list dimension will not lead to any insights regarding the aim of this
thesis, also the word list dimension was omitted.

Before analyzing the dependent variables listed above, one general observation was
made when analyzing performance in the secondary tasks: Participants made more
errors in the secondary task in workload mode High (mean: 2.680, SD: 2.519) than
in workload mode Low (mean: 0.125, SD: 0.393). A two-sided t-test (α = 0.05)
showed that this difference was significant.

Regarding the different dependent variables, the following dimensions were analyzed:

• Response time: reinforcement, gap, cluster, target, correctness of response

• Hit rate: reinforcement, gap, cluster

• False alarm rate: cluster

• Accuracy: cluster
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Effects of Workload
Dependent Variable None Low High

Response Time 0.92701 (0.44917) 1.01688 (0.56657) 1.09282 (0.68536)
Hit Rate 0.88115 (0.29095) 0.69922 (0.41338) 0.59478 (0.43863)

False Alarm Rate 0.04549 (0.11950) 0.09722 (0.17528) 0.14306 (0.21808)
Accuracy 0.83611 (0.23246) 0.60972 (0.30167) 0.45799 (0.35273)

Table 3.1: This table shows the mean values and the standard deviations of the
dependent variables across the workload modes. Each cell contains ”mean (SD)” for
the specified dependent variable in the specified workload mode. Response Time is
given in seconds. Hit rate, false alarm rate and accuracy are given as fraction.

Significance was always tested by using a one-way or two-way ANOVA with a sig-
nificance level of α = 0.05.

As a one-way ANOVA showed, there was a significant effect of workload regarding
all four dependent variables. Table 3.1 lists the means and standard deviations
across workload modes and figure 3.3 illustrates these results by using bar charts.
As it can be easily seen, hit rate and accuracy decrease with increasing workload,
whereas response time and false alarm rate rise with increasing workload. Note that
it is response time at retrieval that is influenced by workload at encoding time.

When focusing on response time, the following main effects were observed:

• Effect of reinforcement:
Response time of words reinforced twice is significantly lower than response
time of words reinforced only once. This effect can be observed when doing
an overall analysis considering data from all workload modes, and when con-
sidering only workload mode None. In workload modes Low and High, this
relationship still holds for the mean values, but the effect is not significant.

• Effect of gap:
Response time of words retrieved directly after their last reinforcement was
significantly lower than response time of words retrieved with a gap after their
last reinforcement. This effect can be observed in workload modes None and
Low, and when doing an overall analysis. In workload mode High, however,
this effect is not significant.

• Effect of target:
Response time of target words was significantly lower than response time of
distractor words. Again, this effect can be observed in workload modes None
and Low, and in an overall analysis, but not in workload mode High.

• Effect of correctness:
Response time of correct responses was significantly lower than response time
of incorrect responses. This effect can be observed in all of the three workload
modes None, Low and High, and in an overall analysis.

• Effect of cluster for distractor words:
When only analyzing distractor words, response time of cluster words was
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Figure 3.3: This figure illustrates the contents of table 3.1 by using bar charts.
Bars represent mean values of the given workload mode and error bars represent the
corresponding standard error.
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significantly higher than response time of singleton words. This effect was
observed in workload modes None and High, and in an overall analysis. In
workload mode Low, this effect was not significant.

• Effect of cluster:
A general effect of cluster was observed in workload mode None: Response
time of cluster words was significantly higher than response time of singleton
words. However, no such general cluster effect could be observed for the re-
maining workload modes Low and High. Also in an overall analysis, this
effect did not arise.

Note that the number of observed effects regarding the response time decreases
from six significant effects in workload mode None, over three significant effects in
workload mode Low, to only two observed effects in workload mode High.

However, the analyzed response times contain also the response times of guessing
– which might bias the results. Because of this, response time was also analyzed
when considering only correct answers which were considered to be less biased by
guessing. The following effects were observed:

• Effect of reinforcement:
Again, in workload mode None and in an overall analysis, response time of
words reinforced twice was significantly lower than response time of words
reinforced only once.

• Effect of gap:
In all workload modes (None, Low, High) and in an overall analysis, there
was a significant effect of gap. Words retrieved without a gap had a signifi-
cantly lower response time than words retrieved with a gap.

• Effect of target:
In all workload modes and in an overall analysis, response time of target words
was significantly lower than response time of distractor words.

• Effect of cluster for distractor words:
The effect of cluster distractor words having a significantly higher response
time than singleton distractor words was observed only in workload mode
None and in an overall analysis.

• Effect of cluster:
Again, only in workload mode None a general effect of cluster could be ob-
served with cluster words having a significantly higher response time than
singleton words.

When focusing on hit rate, the following main effects were observed:

• Effect of reinforcement:
In all workload modes (None, Low, High), as well as in an overall analysis,
hit rate of words reinforced twice was significantly higher than hit rate of words
reinforced only once.
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• Effect of gap:
Hit rate of words retrieved directly after their last reinforcement was signifi-
cantly higher than hit rate of words retrieved with a gap between their last
reinforcement and their retrieval. This effect was observed in all workload
modes, as well as in an overall analysis.

• Effect of cluster:
In workload modes Low and High, and in an overall analysis, hit rate of clus-
ter words was significantly higher than hit rate of singleton words. However,
in workload mode None, this effect was not significant.

When focusing on false alarm rate, one main effect was observed:

• Effect of cluster:
Cluster words had a significantly higher false alarm rate than singleton words
in workload modes None and High, as well as in an overall analysis. In
workload mode Low, however, this effect was not significant.

When focusing on accuracy, no further significant effects could be observed, apart
from the effect of declining accuracy for increasing workload.

Moreover, the different clusters were compared to find cluster dependent effects
(e.g. one cluster having significantly higher hit rate than all other clusters), but no
significant effect could be observed.

See appendix A.4 for a table containing mean values and standard deviations for all
effects listed above.

By doing several two-way ANOVAs (one for each dependent variable), no signifi-
cant interaction effects regarding the analyzed dimensions could be observed. All
observed interaction effects contained at least one of the dimensions block, word list,
age or gender. However, as described above, these dimensions were omitted from
analysis.

Figures 3.4 and 3.5 show four interaction plots: response time as a function of
reinforcement and cluster, response time as a function of reinforcement and gap,
hit rate as a function of reinforcement and cluster, and hit rate as a function of
reinforcement and gap. The approximately parallel curves indicate that there is no
interaction between reinforcement and gap, and reinforcement and cluster, regarding
both hit rate and response time.

Figure 3.6 shows response time for correct answers as a function of workload mode
and target. Although no significant interaction effect could be observed, in each of
the three workload modes a main effect of target exists. When looking at figure 3.6,
two further observations can be made: Each curve (for target and distractor words)
is approximately on a straight line. Moreover, the difference between both curves in
workload mode None is nearly twice as large as it is in workload mode High (as
indicated by the bars).
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Figure 3.4: This figure shows two interaction plots illustrating response time as
function of reinforcement and cluster, and as function of reinforcement and gap,
respectively. ”C” stands for cluster words and ”S” for singleton words. Gap ”0”
corresponds to words retrieved without a gap and gap ”1” to words retrieved with a
gap.



28 3. Experimental Design

Figure 3.5: This figure shows two interaction plots illustrating hit rate as function
of reinforcement and cluster, and as function of reinforcement and gap, respectively.
”C” stands for cluster words and ”S” for singleton words. Gap ”0” corresponds to
words retrieved without a gap and gap ”1” to words retrieved with a gap.
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Figure 3.6: This interaction plot shows response time for correct answers as a func-
tion of workload mode (x-axis) and target (solid vs. dashed line). The solid line
represents mean response time for correctly recognized target words, whereas the
dashed line represents mean response time for correctly recognized distractor words.
On the x-axis, ”H” stands for workload mode High, ”L” for workload mode Low
and ”N” for workload mode None.
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3.3 Discussion

The results from this experiment prove that workload has an impact on human
memory performance: Not only quality of retrieval (measured as hit rate, false alarm
rate and accuracy) is affected by workload, but also the time needed for retrieval
(measured as response time). Both the worse performance under high workload
and the higher amount of errors made in the secondary task under high workload
approve that workload mode High was more demanding than workload mode Low
and workload mode None. Performance decreases in both primary and secondary
task as workload gets higher, which indicates that participants did not give up on
one of the tasks to fully concentrate on the other one.
One possible explanation for this observed effect is the Shared Time Model proposed
by Craik et al. (1996) [3] which describes memory performance as a function of
available encoding time: As the secondary task gets more complicated, less time
is available for encoding and this leads to a rather shallow encoding in memory.
Retrieval of a word being less deeply encoded is then having a lower probability of
success than retrieval of a deeply encoded word.
The interesting fact of response time at retrieval being influenced by workload at
encoding time suggests that also retrieval time is dependent on the depth of encoding.

Effects observed for reinforcement and gap indicate learning by repetition and forget-
ting: When learned twice, a word can be retrieved faster and with greater probability
than in case it was only learned once, so repetitive learning seems to lead to deeper
encoding. Furthermore, a gap in retrieval leads to higher response time and to lower
retrieval probability, which can be easily explained by the effect of forgetting infor-
mation encoded further away in the past. However, this effect of decay over time is
not uncontroversial in the psychological community: For example, Lewandowsky &
Oberauer (2009) [26] argue that there is no time-dependent decay. They propose a
model where retrieval probability is dependent on the time available for restoring the
memory. When this restoration time is reduced due to other activities (e.g. post-
error processing or some other memorizing processes), the probability of successful
retrieval declines. This is also a reasonable explanation since if a word is retrieved
with a gap, not only the temporal distance between encoding and retrieval, but also
the number of words learned and retrieved between encoding and retrieval of this
word is larger than for a word retrieved without a gap. However, since the model
devised to reproduce this effect is based on the ACT-R declarative module which
assumes decay to be time-dependent, the theory by Lewandowsky & Oberauer will
not be considered for the remainder of this thesis.

The effect of cluster on hit rate with cluster words having a higher hit rate than
singleton words indicates that it is easier to learn semantically connected chunks of
information than to learn semantically unrelated words. However, since this effect
was not observed for workload mode None, it might be that this chunking strategy
is only adopted when limited resources are available for encoding. Of course, it
is also possible that the effect does also exist for workload mode None, but that
its effect size was too small to be measured in this experiment. Nevertheless, when
considering response times, there is only an effect of cluster for workload mode None
– with cluster words having a higher response time than singleton words.
This is a rather unexpected result: If a high hit rate can be attributed to deep
encoding and a short response time can also be attributed to deep encoding, one
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would probably expect the response time of cluster words to be significantly lower
than the response time of singleton words. Since for calculating the hit rate, only
target words are considered, at least a response time effect of cluster for target words
might be expected. However, no such effect could be observed. Again, it is possible
that this effect exists, but was not uncovered by this experiment. Moreover, since
Craik et al. (1996) [3] did not address the issue of semantically related words, their
Shared Time Model might only be valid for singleton words.

When considering false alarms (i.e. distractor words erroneously being recognized
as target words), cluster words have a significantly higher false alarm rate than
singleton words. This can be interpreted as participants mixing up semantically
related nouns: When a participant has encoded the words ”emerald”, ”diamond”
and ”opal”, he/she might memorize them as ”some gems”. Being asked to retrieve
”sapphire”, he/she might then erroneously recognize this word since it belongs to the
same category. As the effect of cluster on distractor words’ response time suggests,
it seems to be a more difficult task to decide for a cluster word whether it has
been encoded before than for a singleton word. This is in line with the higher false
alarm rate mentioned before: As making a decision for a cluster distractor word is
more difficult than making a decision for a singleton distractor word, the process of
making this decision takes more time and leads to more errors.

The results regarding cluster words vs. singleton words are contrary: On the one
hand, cluster words have a significantly higher hit rate than singleton words which
suggests that cluster words can be encoded better than singleton words due to their
semantical relationship to other words. On the other hand, cluster words also have a
significantly higher false alarm rate than singleton words which suggests that cluster
words are also easier to confuse with other semantical related words. This would
mean that having semantical relationships to other words is both beneficial and ad-
verse for correct retrieval. Therefore, the effects of cluster words vs. singleton words
require further research. However, these contrary effects can be easily modeled by
using a spreading approach as in LTMC : cluster words receive more spreading acti-
vation than singleton words (since they have more connections to context-relevant
words) and a higher spreading activation will result in a higher probability of re-
trieval – which leads both to a higher hit rate (probability of retrieval of target
words) and a higher false alarm rate (probability of retrieval of distractor words).

The observation that there are no significant effects of accuracy can be explained
by this contrary results for the cluster dimension: Since accuracy is computed as
difference between hit rate and false alarm rate, and since only the cluster condition
is considered, the observed contrary cluster effects neutralize. As cluster words have
both a higher hit rate and a higher false alarm rate than singleton words, their
accuracy is not significantly higher than the accuracy for singleton words because
both effects get subtracted.

When comparing the results of analyzing response time and of analyzing response
time of correct responses, only minor differences can be found: When analyzing
response time of correct responses, the effects of gap and target are also significant
in workload mode High, but the cluster effect when only considering distractor
words is not significant in workload mode High.

The significant effect of target on response time indicates that identification of an
encoded word is faster than identification of a previously unseen word. Moreover,
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correct responses being faster than incorrect ones suggests that participants re-
sponded fast when they were sure and slowly when they were unsure and needed
some time for consideration. This additional time of consideration could also be an
explanation for the higher response time of distractor words. However, these effects
on response time require further research.

The approximately parallel curves in figures 3.4 and 3.5 indicate that the effects of
reinforcement and cluster are independent of each other. This also seems to apply
to the effects of reinforcement and gap. The consequence of this observation is that
for devising a model to mimic the results of this experiment, these effects can be
modeled independently of each other.

Although there was no significant interaction effect observed regarding response
time, the number of significant effects within each workload mode indicate that the
differences in response time converge with increasing workload. Figure 3.6 illustrates
this effect: Although no significant interaction effect was observed, the differences in
response time between target words and distractor words are approximately halved
when considering workload mode High compared to workload mode None. So
although there is no significant effect, a slight tendency can be observed.

3.4 Conclusions

This experiment confirmed that there are effects of learning by practice and effects
of forgetting. Thus, it indirectly confirmed the plausibility of the ACT-R equation
for the base level activation which takes into account exactly these effects. Hence,
the ACT-R declarative module seems to be a good starting point for modeling
the observed effects. Moreover, the Shared Time Model by Craik et al. (1996)
[3] was confirmed at least in parts. However, there is more research necessary,
e.g. regarding the effects of cluster words. One potential approach of modeling the
observed cluster effects is the spreading approach used in LTMC . The observation of
some effects being independent of each other can be taken into account by modeling
these effects independently of each other. In the following chapter, a model is devised
for predicting the effects observed in this experiment.
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As stated in the introduction, the purpose of this bachelor thesis is not only to
conduct a psychological experiment and to analyze the results of this experiment,
but also to devise a model which can reproduce the observed effects. The described
WorkloadMemoryModel (WMM) will only try to reproduce the observed mean val-
ues, but not the variances. First, the general model design is described and key
design decisions are discussed. Second, the implementation of the model is outlined.

4.1 General Model Design

This section describes the general design of the WorkloadMemoryModel and dis-
cusses key design decisions.

4.1.1 Design Description

The WorkloadMemoryModel (WMM) devised in this thesis brings together the con-
cepts of the ACT-R declarative module and of LTMC with the WordNet database.
Note that there has already been research in adapting the ACT-R cognitive archi-
tecture to different workload modes (see Pröpper & Putze, 2011, [27]). However,
their research has focused on the overall architecture’s performance under workload,
whereas this thesis specifically addresses the memory model.

The basic element of the WMM is called a memory element. Every memory element
corresponds to a WordNet noun synset, has a unique identifier (the WordNet synset
ID) and is connected to other memory elements via a parent/child relationship. This
relationship is obtained by the hypernym/hyponym relation between WordNet noun
synsets.

Probability of retrieval and retrieval time depend like in ACT-R on an activation
value. This activation value consists of base level activation and spreading activation.

The base level activation is computed according to the ACT-R equation:

B(i) = ln(
n∑
k=1

(tc − tk)−d) (4.1)
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Figure 4.1: This figure illustrates the spreading step. An activation value of sin = 0.6
is spread from node Z to node X. Node X divides this amount of spreading activation
by the number of neighbors that have not been visited yet (which is m = 3) and
spreads the new value sout = 0.6/3 = 0.2 on to its neighbors. Moreover, node
X increases its local spreading activation by sin = 0.6. The grey edges represent
hypernym/hyponym pointers that are not used in this spreading step.

The free parameter d is called the decay parameter. The ACT-R equation leaves
also the unit of time as a degree of freedom for the modeler. For the WMM, times
tk and tc will be measured in minutes since the experiment start.

To provide all memory elements with a reasonable initial activation value, all ele-
ments are assumed to be encoded at time t = −60 min. This prevents the activation
value from becoming negative infinity.

As a simplification, all encodings within a learning phase and all retrievals within
a retrieval phase are assumed to take place at the same point in time, respectively,
which is defined as the center of the respective phase. The time difference between a
learning and a subsequent retrieval phase is set to 37 seconds, and the time difference
between a retrieval and a subsequent learning phase is set to 27 seconds for the
conducted experiment.

The spreading activation is computed in a similar fashion as in LTMC , but with base
level activations as starting point instead of external stimulation: First, at each time
step, the base level activation of each memory element is computed.

Then, each of the memory elements that have a value high enough to be spread is
selected as a starting point for spreading. Spreading itself works in a breadth first
search manner: Starting at a memory element i, the received spreading activation
sin (either spread to i by some of its neighbors, or the starting value if i is the
current starting point for spreading) is divided by the number m of neighbors that
have not been visited, yet. If the resulting value sout = sin/m is greater than a
specific spreading threshold τspread, it is spread to the neighboring nodes in a BFS
manner. If i is not the current starting point of spreading, sin is added to its local
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spreading activation. Figure 4.1 illustrates this spreading step. After processing i,
the next element is chosen according to the BFS order and processed in the same
way. This is done until the spreading value falls below τspread everywhere.

Since base level activations can be negative, but only positive values should be
spread through the memory element network, a spreading potential Pspread is added
to the base level activation and this sum is multiplied with the factor 10. If the
resulting value 10 · (B(i) + Pspread) is higher than τspread, it will be spread amongst
the memory element network. To reduce the number of free parameters, like in
LTMC , the spreading threshold is set in dependence of the starting value. In this
case, it is set according to equation 4.2 at the beginning of each spreading procedure:

τspread =
∣∣10−4 · (10 · (B(i) + Pspread))

∣∣ =
∣∣10−3 · (B(i) + Pspread)

∣∣ (4.2)

This procedure of spreading is run for every memory element as a starting point.
After that, every node has received a total amount S(i) of spreading activation. The
overall activation of this node is then computed by adding its base level activation
and its spreading activation as in equation 4.3:

A(i) = B(i) + S(i) (4.3)

In contrast to ACT-R and LTMC , no noise activation is added.

As in ACT-R, the probability of retrieval can be computed according to equation 4.4,
where τ is the retrieval threshold and s is a factor reflecting the retrieval sensitivity.

P (i) =
1

1 + e−(A(i)−τ)/s (4.4)

When computing the response time for a retrieval request, the WMM makes a
distinction between elements that have been retrieved successfully (equation 4.5) and
elements that have not been retrieved (equation 4.6). In both cases, I is the intercept
time needed for visual perception and manual response and F is the retrieval latency
factor.

rtretrieved(i) = I + F · e−A(i) (4.5)

rtnotRetrieved(i) = I + F · eτ+f ·A(i) (4.6)

According to the relationship between F and τ mentioned in Anderson et al. (2004)
[5] (see also section 2.1.1), in the WMM, F is always set to 0.35 · eτ . In case the
element is not retrieved from memory, there is an additional parameter f which
is called the distractor factor. It determines the influence of a memory element’s
activation on the response time in case it can not be retrieved. The distractor factor
f is not allowed to be negative and aims to model the effect of cluster distractors
having a higher response time than singleton distractors since in the WMM they
receive a higher amount of spreading activation.
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For each retrieval request, the WMM will return two values: The retrieval probabil-
ity P (i) and the expected response time rtexpected(i) which can be computed as in
equation 4.7:

rtexpected(i) = P (i) · rtretrieved(i) + (1− P (i)) · rtnotRetrieved(i) (4.7)

In total, the model has eight parameters: decay d, intercept time I, retrieval thresh-
old τ , latency factor F , spreading potential Pspread, spreading threshold τspread, dis-
tractor factor f and retrieval sensitivity s. Since F is computed dependent on τ ,
and τspread is computed dependent on Pspread and B(i), six free parameters remain.

The design as stated until now does not contain any component for modeling different
workload modes. This is simply done by using three different parameter sets – one
for each workload mode. So for each word in workload mode None, the None
parameters are used, for each word in workload mode Low, the Low parameters
are used, and for each word in workload mode High, the High parameters are used.

For calculating the base level activation B(i) of a memory element, the three work-
load parameter sets might interact: For each summand (tc−tk)−d in equation 4.1, the
decay parameter of the workload parameter set corresponding to encoding time tk is
used. For example, if a memory element is encoded at t0 when the workload mode
was None, and at t1 when the workload mode was Low, then the base level acti-
vation is computed as B(i) = ln((tc− t0)−dNone + (tc− t1)−dLow) with dNone and dLow
being the decay parameters of parameter set None and Low, respectively. This is
the only interaction happening between the three workload modes – spreading acti-
vation, retrieval probability and response time are each calculated independently of
the other parameter sets.

4.1.2 Design Decisions

Some design decisions that have been made during devising the WMM deserve dis-
cussion and explanation:

Exactly One Synset For Each Memory Element
The design decision that each memory element should correspond to exactly one
WordNet synset was made for simplicity:

The words the model will operate on are the German nouns listed in appendix A.1
which were used for conducting the experiment. However, the WordNet database
is a model of the English language. So a good mapping needs to be found to map
the German nouns to English synsets. A straightforward approach of translating
each German noun into a English noun and then looking for synsets containing this
English noun has one major disadvantage:

For example, consider the German noun Tisch. It can be translated into the English
noun table. This noun appears in multiple synset, two of which are { table, ”a piece
of furniture”} and { table, ”a set of data arranged in rows and columns”}. However,
the second synset is not a meaning of the German word Tisch – if you translate
it back, you get the German word Tabelle. So stimulating the synset { table, ”a
set of data arranged in rows and columns”} for the German noun Tisch is clearly
inaccurate.
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Due to this problem, the approach of mapping each German noun to exactly one
corresponding WordNet synset was chosen. By doing so, the problem mentioned
above does not occur. However, the ambiguity of several words cannot be taken into
account. For example, when seeing the word mouse, one might either think of the
animal or of the computer device. By determining only one corresponding synset,
effects arising due to this ambiguity cannot be modeled.

On the other hand, using exactly one synset for each memory element simplifies
the encoding and retrieval processes: If there were several synsets associated to one
memory element, one would have to make a decision regarding the starting values
for spreading. Will each synset receive all of the base level activation of the memory
element or just a fraction? If it receives only a fraction, will the base level activation
be equally distributed among the synsets or will there be a weighted distribution?
And what if there are some memory elements with only one associated synset and
some memory elements with maybe five associated synsets? The memory element
having more associated synsets might receive more spreading activation than the
memory element having only one associated synset. Are their activation values then
still comparable? Moreover, are different memory elements allowed to share some
common synsets? By using exactly one synset per memory element, these questions
and design decision are avoided and the model is kept simple.

Time Measurement in Minutes
In the WMM, time is measured in minutes since the experiment start. This time
unit has been chosen because it best reflects the time difference between encoding
and retrieval of a word, which is usually between 25 seconds and 112 seconds. By
using seconds as time unit, the range of values would have been too large, whereas
by using minutes it is between and 0.42 and 1.87. As it can be seen in figure 2.1 in
section 2.1.1, for a time difference tc− tk of one, the base level activation is zero. So
by choosing seconds as time unit, the base level activation of literally all memory
elements would have been negative, whereas by choosing minutes as time unit, there
are both elements with positive and elements with negative base level activation.

Initial Encoding Of Memory Elements
All memory elements are initially encoded at t = −60 min. If no initial encoding is
provided, the activation of previously unlearned memory elements will always equal
negative infinity. However, this is highly implausible, since an activation of negative
infinity implies that this word has never been seen before. But the words are all used
in common language, so they have definitely been seen before. Since an activation
value of negative infinity is implausible, the activation of each memory element
should be initialized in some way. The most straightforward way of implementing
this is adding an initial encoding somewhere in the past.

Simplification of Time Steps
All encodings during a learning phase and all retrievals during a retrieval phase are
assumed to take place at the same point in time, respectively, and because of that,
time steps only do happen between phases but not within them. This simplification is
made to avoid an oversensitivity regarding time. As the words were placed randomly
within a phase when conducting the experiment, their mean position within a phase
is in this phase’s center point. Since the reinforcement and the gap condition are
only based on time steps between phases but not on time steps within phases, this
simplification should not impair the model’s predictions.
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Computation of Spreading Activation
In the WMM, the starting value for the spreading process is determined dependent
on the base level activation. In LTMC , for example, at the beginning of spreading,
nodes which are currently in the context are activated. So when a person is asked
which direction relation holds between Paris and London, the three nodes ”direction
relation”, ”Paris”and ”London”will receive an initial activation which then is used for
spreading. However, since the WMM tries to model effects arising in a recognition
test, this approach seems to be rather impractical.

The only activation available in the WMM for use as spreading starting activation
is the base level activation. The underlying assumption of using the base level
activation here is that memory elements that are currently very ”active” in memory
influence their neighboring elements more than ”silent” memory elements. However,
the base level activation can be negative, and a negative base level activation does
not imply that this memory element cannot be retrieved from memory. On the
other side, spreading negative activation seems to be highly implausible because
then received spreading activation might decrease the overall activation of a memory
element. One possible effect could then be forgetting ”boy” because ”girl” has a
negative activation value. In order to avoid effects like that, only positive values can
be spread, and to allow even memory elements with a slightly negative base level
activation to spread some activation to their neighbors, the spreading activation is
lifted by a specific potential Pspread. The factor 10 by which this sum is multiplied
accounts for the large number of neighbors a memory element from the WordNet
database usually has: Since spreading activation is split up at each node, only little
activation will reach nodes being two or three hops away. If spreading only adds
values in the order of magnitude of 10−3 to the base level activation, there will be no
noticeable effects of spreading, and hence the factor 10 was introduced to increase
the effect of spreading.

No Noise Activation
In contrast to ACT-R and LTMC , no noise activation is used. Since this model’s
purpose is only to predict mean values and a noise value usually would have an
expected value of zero, this design decision will not effect the predicted mean val-
ues. However, by eliminating the influence of chance on the activation, a source
of nondeterminism within the model is removed which in turn is an advantage for
evaluation.

Modeling Workload Modes By Using Different Parameter Sets
Modeling different workload modes by simply using different parameter sets makes
the least assumptions. Of course, it would be desirable to have only one single
continuous workload parameter w ∈ [0, 1] for distinguishing the different workload
modes. However, since there is no a priori knowledge about which free parameters
are influenced in which way by the different workload modes, modeling would be-
come very complicated: For each equation, one would need to find a way in which w
influences this equation without concrete knowledge of the implications. Moreover,
the equations are dependent on each other and the interactions are not trivially to
understand. By modeling the different workload modes with different parameter
sets, the option to introduce such a parameter w is still left open: If the different
parameter sets are compared, maybe some relations between the values can be ob-
served.
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A different approach would have been the use of linear regression. This probably
would have yielded good results since all dimensions considered in the experiment
consist of only two values (except the workload dimension which consists of three
values). However, linear regression would estimate the dependent variables as linear
combination of the dimensions. This means that the results obtained from linear
regression will be less generalizable – for example, when introducing two more val-
ues for the reinforcement dimension, the predictions made by the linear regression
model will probably be rather poor.

Interaction Of The Parameter Sets
The interaction of the different parameter sets was introduced because of the fol-
lowing reasoning:
Workload is assigned during encoding and not during retrieval. So when calculating
the base level activation of a memory element, the workload mode which was active
during encoding should be used. Although this was not the case in the experiment
described in chapter 3, it could be possible that a memory element is encoded in
different workload modes. To preserve this option, for each time of reinforcement
tk, the correct corresponding workload parameter set is used.

4.2 Implementation
The WMM was implemented in Java1, using the MIT Java Wordnet Interface
(v2.2.3, see http://projects.csail.mit.edu/jwi/), args4j (v2.0.21, see http://args4j.
kohsuke.org/), Java CSV (v2.1, see http://www.csvreader.com/java csv.php) and
the ”Apache Commons Math”library (v3.0, see http://commons.apache.org/math/).
WordNet 3.0 (see http://wordnet.princeton.edu/) was used as database. See ap-
pendix B.2 for instructions on how to use the WMM implementation.

Figure 4.2 gives an overview of the most important classes of the WMM implemen-
tation and how they are associated. The Starter class contains the main() method
and is therefore the program entry point. It processes the command line arguments
and decides whether only a simulation shall be executed or whether a optimization
should be started. In the former case, it transfers control to the Tester class which
simulates one complete experiment setting with 24 participants. In the latter case,
control is transferred to the Optimizer class which contains an algorithm for opti-
mizing the model’s parameters in order to predict the experiment’s results. This
algorithm will be described in section 5.1. The fourth important class inside the
framework package is the Parser class which is responsible for parsing input files
and for generating output files. Due to this function, both Tester and Optimizer
use its services. All of this four classes implement the singleton design pattern since
there should be only one object of them each.

As the Tester simulates a whole experiment setting with 24 participants, it needs
to simulate 24 experiment runs. For generating new experiment runs, the Experi-
mentRunGenerator is executed. This python script has also been used to generate
experiment runs for the actual experiment described in chapter 3. See appendix B.1
for more information on the ExperimentRunGenerator. Note that due to the usage
of the experiment run generator script, which uses randomization, the WMM imple-
mentation also becomes nondeterministic, although the influence of randomization
should be rather small in practice.

1using the Eclipse Indigo IDE

http://projects.csail.mit.edu/jwi/
http://args4j.kohsuke.org/
http://args4j.kohsuke.org/
http://www.csvreader.com/java_csv.php
http://commons.apache.org/math/
http://wordnet.princeton.edu/
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Figure 4.2: UML class diagram containing the most important classes of the WMM
implementation. Dashed lines represent ”uses” relations.
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Everything described until now is not part of the actual memory model but rather an
automated way of using and accessing it. The actual memory model is contained in
the model package. The WorkloadMemoryModel class (which is again implemented
as a singleton) provides access to the model. It manages a set of memory elements
and has an associated workload behavior. The WorkloadBehavior class implements
this workload behavior and contains the equations and algorithms described in sec-
tion 4.1.1. In total, there are three objects of the WorkloadBehavior class (one
for each workload mode) which differ only by their parameter values. To ensure
that there are exactly three WorkloadBehavior objects, a singleton-like access is
used with three static WorkloadBehavior class attributes. The BehaviorParameters
class encapsulates all free model parameters and is used for changing the parame-
ters of a WorkloadBehavior when testing different parameter configurations during
optimization.

The abstract MemoryElement class provides a partial implemented interface for the
memory elements contained in the memory model. It is implemented by the two
classes WordNetMemoryElement and AddedMemoryElement. The WordNetMem-
oryElement class implements a memory element that is connected to exactly one
synset from the WordNet database. However, it became apparent that not all words
used in the experiment could be mapped to an existing synset from the WordNet
database. So an approach was needed to add some new elements. Since adding
elements to the underlying WordNet database is a rather complex issue, and only a
small number of words was involved, a different approach was chosen by implement-
ing the AddedMemoryElement class. It behaves exactly the same as the WordNet-
MemoryElement class, but internally, the parent/child pointers are not retrieved by
looking for hypernyms/hyponyms in the WordNet database, but by loading them
from a configuration file on program start.

As it became apparent, adding new elements was necessary for another reason: The
cluster words used in the experiment were chosen from Battig & Montague (1969)
[18] who listed the most popular responses people make when asked for a word in a
specific category (e.g. ”a carpenter’s tool”). The responses retrieved in their paper,
however, are not based on any hierarchical, linguistical word database like WordNet.
As a result, the distances in the WordNet database of the cluster words used in the
experiment (e.g. pliers, hammer, saw, chisel, plane and nail for the ”a carpenter’s
tool” category) were rather large. Figure 4.3 illustrates this problem: Not only
are the cluster words far apart from each other, but also the number of edges for
each intermediate node is relatively large. This also means that nearly no spreading
activation would reach another cluster word via the hypernymy/hyponymy hierarchy
for some clusters due to the large distances and the large degree of intermediate
nodes.

To solve this problem, a new memory element was added (”popular tools”) and the
cluster words plus four more words with a high ranking in the category from Battig
& Montague (1969) [18] were added as child nodes. The result is illustrated in figure
4.4. By modifying the database in this way, more direct paths between the cluster
words are established in addition to the already existing connections. This was done
for 20 of the 24 clusters used in the experiment. Of course, this is not an elegant
solution, but it was necessary to modify the underlying database in this way in
order to ensure that the spreading actually can work. However, for future research
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Figure 4.3: Structure of the WordNet noun hierarchy regarding the six cluster words
from the ”a carpenter’s tool”category. Thick lines represent other hyponym relations
of a synset, the annotated number represents the quantity of these relations.
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Figure 4.4: This figure illustrates the solution approach for the problem regarding
cluster words in WordNet.

it would be advisable to choose a database different from WordNet. One possible
database could be ConceptNet (see http://conceptnet5.media.mit.edu/) because it
is more oriented on everyday knowledge than on linguistical word hierarchies.

To round out the description of the WMM implementation, an example program
execution is described: The program is started with the intend to optimize the pa-
rameters. The Starter class parses the command line arguments and hands them on
to the Optimizer singleton object. The Optimizer loads information like the ranges
of valid parameter values by using the Parser singleton object. After three sets
of parameters (encapsulated as BehaviorParameter objects) have been generated
(one for each workload mode), they are passed on to the WorkloadBehavior objects.
When the WorkloadBehavior objects have adopted their new parameters, the Opti-
mizer invokes a simulation method on the Tester singleton object. The Tester calls
the ExperimentRunGenerator to create new input data which is then read by again
using the Parser. The Tester feeds the WorkloadMemoryModel with the first word
to encode. Since this is the first time the WorkloadMemoryModel singleton object
is used, it initializes by loading all memory elements appearing during the experi-
ment into memory and reinforcing them at t = −60 minutes. Moreover, the added
memory elements are parsed and added to the memory as well as the added con-
nections between memory elements. These steps are again supported by the Parser.
After each time step, the WorkloadMemoryModel calculates the current spreading
activation by referring to the currently active WorkloadBehavior. Moreover, on each
retrieval, the WorkloadBehavior is used for computing the retrieval probability and
the expected response time. This is done by referring to the MemoryElement which

http://conceptnet5.media.mit.edu/
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is holding both the times of reinforcement for calculating the base level activation,
and the current spreading activation. The Tester receives all this retrieval probabil-
ities and expected response times and hands them on to the Optimizer which can
then judge whether the chosen parameter configuration is considered to be good or
bad. Finally, when the optimizing algorithm is done, the results are prompted on
the screen and written to a file by using the Parser.

4.3 Summary

In this chapter, a memory model was devised for predicting the effects observed
during the experiment. The WorkloadMemoryModel is based on the ACT-R theory,
uses a spreading approach similar to the one implemented in LTMC and operates on
the WordNet database. However, the WordNet database has turned out to be not
an optimal choice for this utilization since words that are closely related in everyday
knowledge (e.g. hammer and nail) are far apart from each other in the WordNet
noun hierarchy. For further research, other databases like ConceptNet should be
considered for usage. However, for the scope of this thesis, little additions were
made to the WordNet database in order to use it properly. The following chapter 5
describes how this model is evaluated.



5. Evaluation

After devising the WMM, it is important to evaluate it by comparing the predicted
values with the values measured in the experiment. This is necessary for answering
the question whether the devised model can predict the observed effects and hence
can be called a good model of human memory performance.

5.1 Optimization Algorithm

In order to optimize the model’s parameters, a genetic algorithm was used. Genetic
algorithms mimic the natural evolution process. They maintain a population of pos-
sible solutions, and for each of these possible solutions, a fitness value is computed.
Now in every step, a new population element is produced – either by mutating
a given one (”asexual reproduction”) or by mating two given ones (”sexual repro-
duction”). The new offspring is added to the population and its fitness value is
computed. In each step, one or two elements of the population are selected for re-
production and one element of the population is selected for removal. A high fitness
value corresponds to a high probability of reproduction and a low probability of re-
moval, whereas a low fitness value corresponds to a low probability of reproduction
and a high probability of removal (”survival of the fittest”). After a fixed number of
steps or when a specific fitness quality is reached, the algorithm terminates.

The optimization algorithm used in this thesis maintains one population of pos-
sible parameter configurations for each of the three workload modes. The size of
these populations can be configured by the user, its default value is 100. The three
populations are assumed to be independent of each other.

Each parameter configuration consists of values for decay d, intercept time I, re-
trieval threshold τ , spreading potential Pspread, distractor factor f and retrieval
sensitivity s.

The fitness value is obtained by performing a simulation with this parameter config-
uration and by comparing the simulation results with the results of the experiment.
Only mean values are compared, the standard deviation is ignored. The fitness value
is then computed by adding up the relative errors for the three dependent variables
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Figure 5.1: Mating operation of the optimization algorithm: The parameter values
from parent 1 and parent 2 are combined to obtain a new child configuration.

response time, hit rate and false alarm rate. Weighting of these categories can be
adjusted by the user. Per default, each of the listed variables has a weight of 1. The
above-named sum is then negated since a low sum of relative errors should result in
a relatively high fitness value and vice versa.

Mating of two parameter configurations is implemented by selecting a random num-
ber of parameters from the first parent and combining them with the missing param-
eters taken from the second parent. This results in a new parameter configuration
that is added to the population. See figure 5.1 for an illustration.

Mutation of a parameter configuration is implemented by selecting a random number
of parameters from the parent and varying the values of the selected parameters by
adding a normal-distributed random variable. The resulting parameter configuration
is then added to the population. See figure 5.2 for an illustration.

The genetic algorithm used for optimizing the WMM terminates after a fixed number
of iterations (per default after 1000 iterations).

For more information on genetic algorithms, see Mehlhorn & Sanders (2008) [28]
and Russell & Norvig (2010) [29].

Note that the computation of the fitness value is not completely deterministic, al-
though the WorkloadMemoryModel itself is: The WMM implementation uses the
ExperimentRunGenerator script to generate new experiment runs during a simula-
tion. This script uses randomization to assign the words to the different dimensions
(e.g. gap). In general, this randomization should not have a major influence on the
resulting fitness values since for computing the fitness values, 24 experiment runs
are simulated. Nevertheless, after termination of the optimization algorithm, it is
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Figure 5.2: Mutating operation of the optimization algorithm: A random number
of parameter values from parent is selected and randomly changed to obtain a new
child configuration.

advisable to consider not only the parameter configuration with the highest fitness
value, but also parameter configurations with comparable fitness values.

5.2 Optimization Results

Due to the relatively large number of free parameters, the model will not be opti-
mized in one huge optimization run, but rather by using a step-by-step approach.
This ensures the interpretability of the resulting parameter configurations since only
little information is added during each evaluation step.

First, response time and hit rate in the dimensions reinforcement and gap will be
evaluated, considering only singleton target words. This will be done with spreading
deactivated. Second, the question will be analyzed whether the parameter configura-
tions obtained in the first evaluation step are able to reproduce the differences in the
workload dimension. Third, the cluster dimension will be evaluated by introducing
the spreading mechanism and by considering the false alarm rate. Fourth, the target
and cluster dimensions regarding response time will be evaluated by introducing a
distractor factor. Finally, the improvements and impairments made in each step will
be analyzed.

Each of the steps listed above aims at reproducing the empirical data gathered in the
experiment. Two aspects are evaluated: the qualitative and the quantitative predic-
tion of observed effects. Whereas the qualitative prediction of effects is evaluated by
analyzing the differences of predicted values within one dimension, the quantitative
prediction is evaluated by analyzing the fitness values obtained in the optimization,
with a high fitness value indicating a good quantitative fit against the experiment
data.
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Parameter Configurations
For Reinforcement-Gap-Optimization

Workload Mode d τ s Fitness Value

None 0.500 -0.337 0.352 -0.068
Low 0.505 0.031 0.749 -0.081
High 0.798 0.218 0.965 -0.109

Table 5.1: Parameter configurations for the three workload modes as yielded by the
optimization algorithm, and their corresponding fitness values. Note that the decay
parameter d was set to 0.5 for workload mode None a priori (since this is a standard
value that has emerged in the ACT-R community), and was therefore not optimized.

5.2.1 Evaluation of Reinforcement and Gap Dimension

As a first evaluation step, the model was optimized for reproducing the effects of
reinforcement and gap which were observed in the experiment’s results. Spreading
was deactivated and only singleton target words were considered. The optimization
algorithm was run for optimizing against the given response time and hit rate values,
whereas false alarm rates were ignored for this evaluation step. Both response time
and hit rate were assigned equal priority.

The intercept time I was set to 0.680 seconds which has emerged as reasonable value
in several preliminary tests. Intercept time was kept constant since it is interpreted
as time needed for perception and motor reaction and should therefore not be in-
fluenced by cognitive workload. Moreover, the distractor factor f was set to zero
since it influences only the distractor response time and for this evaluation step, only
target words were considered. Furthermore, the spreading potential Pspread was not
optimized since spreading was disabled.

Hence, only the parameters d, τ and s were left for optimization. Table 5.1 shows
their values as determined by the optimizing algorithm as well as the fitness values
of these parameter sets. 1

Tables 5.2 and 5.3 show the results obtained in the experiment and the predictions
made by the model when configured with the parameter sets from table 5.1. Figure
5.3 and 5.4 illustrate these results using bar charts.

As the tables and figures indicate, the model can predict the effects observed in
analyzing the experiment’s results:
Response time of words retrieved with a gap is predicted to be higher and their hit
rate is predicted to be lower than of words retrieved without a gap. Response time
of words reinforced twice is predicted to be lower and their hit rate is predicted
to be higher than of words reinforced once. Moreover, the model does not only
qualitatively predict these results, but also quantitatively. This can be proved by
considering the fitness values which are computed as the negated sum of relative
errors:
As denoted in table 5.1, the three parameter sets have a fitness value of -0.068, -
0.081 and -0.109, respectively, when evaluated against their corresponding workload

1The WMM was started with the command line arguments -wFA 0 -maskNone 001001 -
maskLow 101001 -maskHigh 101001 -filterRT 1133 -filterHit 133 -noSpreading.
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Response Times For Workload Mode None
reinf 1, gap 0 reinf 1, gap 1 reinf 2, gap 0 reinf 2, gap 1

Experiment Data 0.900 0.987 0.795 0.867
Optimized Model 0.860 0.926 0.799 0.850

Response Times For Workload Mode Low
reinf 1, gap 0 reinf 1, gap 1 reinf 2, gap 0 reinf 2, gap 1

Experiment Data 1.001 1.060 0.941 1.031
Optimized Model 0.986 1.070 0.903 0.973

Response Times For Workload Mode High
reinf 1, gap 0 reinf 1, gap 1 reinf 2, gap 0 reinf 2, gap 1

Experiment Data 1.136 1.187 1.114 1.131
Optimized Model 1.072 1.231 0.997 1.131

Table 5.2: Mean values for response time, both as measured in the experiment and
as predicted by the model.

Hit Rates For Workload Mode None
reinf 1, gap 0 reinf 1, gap 1 reinf 2, gap 0 reinf 2, gap 1

Experiment Data 0.868 0.736 0.972 0.889
Optimized Model 0.867 0.643 0.958 0.888

Hit Rates For Workload Mode Low
reinf 1, gap 0 reinf 1, gap 1 reinf 2, gap 0 reinf 2, gap 1

Experiment Data 0.597 0.486 0.826 0.618
Optimized Model 0.597 0.446 0.728 0.617

Hit Rates For Workload Mode High
reinf 1, gap 0 reinf 1, gap 1 reinf 2, gap 0 reinf 2, gap 1

Experiment Data 0.563 0.389 0.729 0.451
Optimized Model 0.562 0.377 0.648 0.493

Table 5.3: Mean values for hit rate, both as measured in the experiment and as
predicted by the model.
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Figure 5.3: This graphs illustrates the results listed in table 5.2.



5.2. Optimization Results 51

mode. As explained above, the fitness value is a negated weighted sum of mean
relative errors made for the dependent variables response time, hit rate and false
alarm rate. In this case, the fitness value is the negated sum of the mean relative
error for response time and the mean relative error for hit rate, with both having a
weight of 1. This means that the average relative error the model makes is around
three to six percent which can be considered as a good fit against the experiment
data.
However, as it can be seen seen for example in figure 5.3, the predictions made by the
WMM are good but not perfect, and there is definitely potential for improvement.

In order to evaluate the approach of using three independent parameter sets, the
parameter set for workload mode None was used as baseline configuration. Its
fitness value when applied to the workload modes Low and High was computed as
-0.491 for workload mode Low and as -0.868 for workload mode High, respectively.
This huge difference between the fitness value of the specialized parameter sets and
the fitness value of the baseline configuration can also be seen in figures 5.3 and 5.4
where the predictions of the None model are plotted against the predictions of the
specialized model and the actual experiment results.

The relatively small average relative error of the specialized parameter sets in con-
trast to the comparatively large relative error of the None parameter set when
transferred to the workload modes Low and High indicates that the design deci-
sion of modeling different workload modes as independent parameter configurations
was a reasonable decision.

By taking a closer look to the parameters, the following observations can be made:

• The decay parameter d increases from 0.500 for None, over 0.505 for Low
up to 0.798 for High. This seems plausible, because a higher value of d
results in faster forgetting. Since the hit rate declines under higher workload,
faster forgetting under higher workload seems to be a reasonable explanation
approach.

• The retrieval threshold τ also increases: from −0.337 for None, over 0.031 for
Low to 0.218 for High. This also seems reasonable: τ gives a threshold value
for the activation of a memory element. Retrieval probability of a memory
element at threshold activation equals 0.5, so a higher threshold τ means that
elements need a higher activation for being retrieved. This appears to be
another plausible explanation approach for the decreasing performance under
higher workload.

• The retrieval sensitivity s does also increase: from 0.352 for None, over 0.749
for Low to 0.965 for High. This is also in line with the previous findings:
Since s influences the sensitivity of the retrieval probability function, a value
of s that is close to zero will cause the retrieval probability to form a smooth
transition between low and high probabilities, whereas a value of s that is close
to one will result in a rather sharp transition. When interpreted this way, the
parameter values listed above indicate that for higher workload the decision
whether a word can be retrieved or not becomes more like a binary decision.
The value of 0.352 for workload mode None seems to be plausible since values
around 0.4 have emerged as reasonable values for this parameter in the ACT-R
community.
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Figure 5.4: This graphs illustrates the results listed in table 5.3.
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Response Times Across Workload Modes
None Low High

Experiment Data 0.887 1.008 1.142
Optimized Models 0.859 0.983 1.108

Hit Rates Across Workload Modes
None Low High

Experiment Data 0.866 0.632 0.533
Optimized Models 0.839 0.597 0.520

Table 5.4: Mean values of response time and hit rate across workload modes, both
as measured in the experiment and as predicted by the model.

Fitness Values Across Workload Modes
Workload Mode Specialized Parameter Set None Parameter Set

None -0.063 -0.063
Low -0.080 -0.476
High -0.054 -0.822

Table 5.5: Fitness values for the parameter sets when predicting mean response time
and mean hit rate for the listed workload modes.

5.2.2 Evaluation of Workload Dimension

Now that reinforcement and gap dimensions are evaluated, the next dimension to
consider is the workload dimension. The model needs to be evaluated for its capa-
bility of reproducing the workload effects observed in the experiment results.

Again, only singleton target words are considered and spreading is deactivated.
The parameters estimated in the previous section are used, and the resulting mean
response time and mean hit rate for each of the workload modes is compared to the
experiment data. Table 5.4 shows the predicted mean values and the ones measured
in the experiment analysis. Figure 5.5 illustrates how they reproduce the experiment
results in comparison to always using the None parameters. As it can be easily seen,
the specialized parameter sets yield much better results.

The fitness values for each of the parameter configurations are denoted in table 5.5.
Again, it can be seen that the fit for the specialized parameter sets is relatively good,
whereas transferring the None model to workload modes Low and High results in
relatively poor fitness values.

This step of evaluation showed that the model is also capable of modeling different
workload modes.

5.2.3 Evaluation of Cluster Dimension

In the previous steps, two important aspects of the experiment and the model have
been left out: The false alarm rate and the difference between singleton and cluster
words.

This section aims at reproducing the differences between singleton and cluster words
when considering only the false alarm rate. As a first attempt of reproducing the
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Figure 5.5: These bar charts illustrate the results listed in table 5.4.
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Parameter Configurations of Cluster-Optimization
Workload Mode d τ s P spread Fitness Value

None 0.500 -0.337 0.352 2.012 -0.219
Low 0.505 0.031 0.749 2.550 -0.171
High 0.798 0.218 0.965 2.983 -0.156

Table 5.6: Parameter configurations for the three workload modes as yielded by the
optimization algorithm when optimizing for singleton and cluster words, and their
corresponding fitness values. Parameter values in grey cells were taken from the
previous evaluation step, and were therefore kept fixed.

cluster effect on the false alarm rate, the parameter sets obtained in the previous
sections were used and spreading was deactivated. As expected, the results were
relatively poor with fitness values of -0.743 for None, -0.448 for Low and -0.360 for
High.

As a next step, the model was optimized with spreading activated. This introduced
a new parameter, the spreading potential Pspread, that had to be estimated. The
parameters determined in previous evaluation steps were kept fixed and only Pspread
was optimized.2 The optimization results are denoted in table 5.6.

Table 5.7 compares the results yielded by both the baseline model and the spreading
model to the actual experiment results. These comparison is illustrated in figure 5.6.

As it can be seen both in the table and in the bar charts, the model is capable of pre-
dicting the effect qualitatively when spreading is activated: The predicted amount
of false alarms differs markedly when comparing singleton words and cluster words.
However, the quantitative prediction appears to be not very accurate as indicated
by the fitness values of -0.219 for None, -0.171 for Low and -0.156 for High. But
at least, a marked improvement regarding the fitness values can be observed when
comparing these fitness values to the ones obtained for the ”no spreading” condition.

So what are the reasons of this rather imprecise quantitative prediction? As one
would expect, there are several possible reasons:

• In the first evaluation step, the model has been optimized for predicting mean
response time and mean hit rate. The parameters obtained in this first evalu-
ation step might be a good fit for response time and hit rate, but not for false
alarm rate. For example, response time and hit rate are in a different order
of magnitude than false alarm rate (0.40 to 1.20 in contrast to 0.02 to 0.16).
The fitness value is computed dependent on the relative error. Whereas an
absolute error of 0.05 in hit rate leads to a comparably small relative error,
the same absolute error in false alarm rate leads to a very large relative error.
Because of this, it might be necessary to estimate all parameters together when
optimizing for false alarm rate instead of using parameters optimized for hit
rate.

2The WMM was started with the command line arguments -wRT 0 -wHit 0 -maskNone 000100
-maskLow 000100 -maskHigh 000100 -size 50 -it 500.
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Figure 5.6: This graphs illustrates the results listed in table 5.7.
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False Alarm Rates
For Workload Mode None

singleton cluster
Experiment Data 0.019 0.052

No Spreading 0.007 0.007
Spreading 0.013 0.059

False Alarm Rates
For Workload Mode Low

singleton cluster
Experiment Data 0.076 0.102

No Spreading 0.048 0.048
Spreading 0.050 0.102

False Alarm Rates
For Workload Mode High

singleton cluster
Experiment Data 0.090 0.156

No Spreading 0.073 0.073
Spreading 0.074 0.136

Table 5.7: Mean false alarm rates measured in the experiment and predicted by the
model – either with spreading deactivated or with spreading activated.

• Another possible reason are the degrees of freedom of the implemented spread-
ing algorithm: Maybe, the spreading threshold τspread or the factor 10 that was
introduced for computing the starting value for the spreading algorithm need
to be treated as free parameters that can also be optimized. This might lead
to a better fit than keeping them fixed or dependent on another parameter.

• Of course, it is also be possible that the spreading approach in general is un-
suitable for this area of application. This, however, is rather unlikely since the
effect can be predicted qualitatively. Moreover, spreading is implemented in
different cognitive architectures and memory models (e.g. ACT-R and LTMC)
and has proved to be a useful concept.

• As noted in the implementation section, the underlying WordNet database
proved to be rather unsuited for this area of application due to the large
distance of cluster words. Perhaps the predictions become more precise when
a different database is used which is more suited for working with semantically
clustered words.

When analyzing the parameter configurations given in table 5.6, an interesting ten-
dency regarding the spreading potential Pspread can be observed: It rises from 2.012
for None, over 2.550 for Low to 2.983 for High. This tendency can be interpreted
as spreading becoming more important under higher workload. This would be in
line with the findings from the experiment in chapter 3 where we found that learn-
ing words in clusters seems to become more important with increasing workload.
However, this tendency should be confirmed by further research.
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Hit Rates For Workload Mode None
singleton cluster Fitness Value

Experiment Data 0.866 0.885 -
No Spreading 0.839 0.839 -0.042
Spreading 0.838 0.869 -0.025

Hit Rates For Workload Mode Low
singleton cluster Fitness Value

Experiment Data 0.632 0.726 -
No Spreading 0.597 0.597 -0.116
Spreading 0.610 0.664 -0.060

Hit Rates For Workload Mode High
singleton cluster Fitness Value

Experiment Data 0.533 0.618 -
No Spreading 0.520 0.520 -0.091
Spreading 0.536 0.621 -0.005

Table 5.8: This table shows the predictions for the hit rates regarding the cluster
dimension as made by the model, and compares them to the experiment results.

Although the model was not optimized to reproduce the effects of cluster on hit rate,
the predictions made for this dependent variable regarding the cluster dimension
were also analyzed. The results of this analysis are listed in table 5.8 and illustrated
in figure 5.7. Again, the observed effects are predicted qualitatively if spreading is
activated. The predicted values, although slightly imprecise (as indicated by the
bar charts), yield relatively good fitness values. This indicates that the WMM is
generally capable of predicting cluster effects on hit rate.

5.2.4 Evaluation of Target Dimension

One parameter has still been excluded from all previous optimization and evaluation
steps: the distractor factor f . This parameter influences the response time of words
that have not been successfully retrieved from memory and therefore plays a major
role in the difference between the response time of target and distractor words. In
all previous evaluation steps, f has been set to zero.

As a next step, the optimization algorithm was run again with all previously de-
termined parameters fixed and only f as free parameter. The differences between
target and distractor words were considered both regarding singleton and cluster
words.3

Table 5.9 shows the parameter configurations yielded by the optimization algorithm
and their fitness values. As it can be seen, the fitness value of workload mode None
is notably worse than the fitness values of workload modes Low and High. Table
5.10 denotes the predicted response times regarding cluster and target dimension. It
is apparent that in workload mode None the predictions made when the distractor
factor is optimized do not significantly differ from the predictions made by the

3The WMM was started with the command line arguments -wFA 0 -wHit 0 -maskNone 000010
-maskLow 000010 -maskHigh 000010 -filterRT 3300 -size 25 -it 250.
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Figure 5.7: This figure illustrates the results from table 5.8.
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Parameter Configurations of Target-Optimization
Workload Mode d τ s Pspread f Fitness Value

None 0.500 -0.337 0.352 2.012 0.004 -0.074
Low 0.505 0.031 0.749 2.550 0.219 -0.025
High 0.798 0.218 0.965 2.983 0.569 -0.034

Table 5.9: Parameter configurations for the three workload modes as yielded by
the optimization algorithm when optimizing for target and distractor words, and
their corresponding fitness values. Parameter values in grey cells were taken from
previous evaluation steps, and were therefore kept fixed.

parameter set from section 5.2.3. However, this comes as no real surprise since the
distractor factor f = 0.004 obtained by the optimization algorithm is very close to
zero, and therefore, the above-named parameter sets do not differ notably.

When analyzing the workload modes Low and High, a significant improvement by
optimizing the distractor factor can be observed. This is also illustrated in figure
5.8: Predictions for distractor words become much better with optimized distractor
factor. However, as it can be seen in table 5.10, the effect of cluster distractors
having a higher response time than singleton distractors is not predicted distinctly
– only a very slight tendency can be observed. This also holds for the general effect
of target: In workload mode Low, the effect of distractor words having a higher
response time than target words is correctly predicted. In workload mode None,
this prediction is not distinct, and in workload mode High a converse tendency is
predicted.

Introducing the distractor factor f improves predictions for workload modes Low
and High, but the model is still not capable of predicting the observed effects
distinctly. This again might be caused by the previous optimization for other di-
mensions and dependent variables. As the improvement in fitness values suggests,
this approach of the activation value into the equation for distractor response time
is a step in the right direction. However, this approach is clearly not satisfying, so
further research is needed in trying to reproduce the observed effects.

When comparing the values of the distractor factor f , again a tendency can be
observed: Its value rises from 0.004 in workload mode None, over 0.219 in workload
mode Low to 0.569 in workload mode High. This would mean that the influence of
activation on a distractor word’s response time rises with increasing workload, which
again can be interpreted as the response time difference between singleton and cluster
distractors becoming larger with increasing workload. This tendency, however, was
not observed in the experiment. Therefore, this parameter’s development across the
workload modes, although being consistent, is not very plausible.
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Response Times For Workload Mode None
singleton cluster

target distractor target distractor
Experiment Data 0.887 0.913 0.891 1.018

No Spreading 0.859 0.870 0.859 0.870
Spreading 0.856 0.865 0.837 0.866

Distractor Factor 0.856 0.863 0.841 0.863

Response Times For Workload Mode Low
singleton cluster

target distractor target distractor
Experiment Data 1.008 1.017 0.976 1.067

No Spreading 0.983 1.186 0.983 1.186
Spreading 0.975 1.171 0.938 1.157

Distractor Factor 0.981 1.018 0.946 1.021

Response Times For Workload Mode High
singleton cluster

target distractor target distractor
Experiment Data 1.142 1.051 1.062 1.117

No Spreading 1.108 1.477 1.152 1.270
Spreading 1.093 1.473 1.134 1.263

Distractor Factor 1.135 1.092 1.149 1.107

Table 5.10: This table compares the response times for cluster and target dimension
as predicted by the different model settings in contrast to the experiment data. ”No
Spreading” stands for the parameter configuration from section 5.2.1 with spreading
deactivated, ”Spreading” for the parameter configuration from section 5.2.3 section
with spreading activated and ”Distractor Factor” for the parameter configuration
obtained in this section when optimizing the distractor factor, also with spreading
activated.
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Figure 5.8: This figure illustrates the contents of table 5.10.
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Response Time in Reinforcement
and Gap Dimension

None Low High
Evaluation Step 1 -0.033 -0.030 -0.050
Evaluation Step 2 -0.034 -0.034 -0.060
Evaluation Step 3 -0.034 -0.028 -0.015

Hit Rate in Reinforcement
and Gap Dimension

None Low High
Evaluation Step 1 -0.036 -0.051 -0.059
Evaluation Step 2 -0.037 -0.054 -0.069
Evaluation Step 3 -0.037 -0.048 -0.069

False Alarm Rate
in Cluster Dimension

None Low High
Evaluation Step 1 -0.743 -0.448 -0.360
Evaluation Step 2 -0.219 -0.171 -0.156
Evaluation Step 3 -0.289 -0.237 -0.111

Response Time in Target
and Cluster Dimension

None Low High
Evaluation Step 1 -0.065 -0.078 -0.164
Evaluation Step 2 -0.074 -0.077 -0.161
Evaluation Step 3 -0.074 -0.025 -0.034

Table 5.11: Fitness values as they have emerged through the evaluation steps. ”Eval-
uation Step 1” corresponds to the parameter set obtained in section 5.2.1, ”Evalua-
tion Step 2” to the one obtained in section 5.2.3 and ”Evaluation Step 3” to the one
obtained in section 5.2.4.

5.2.5 Evaluation of Optimization Steps

In the previous sections, the parameters have been optimized step by step. Since
parameters were added (Pspread) or changed (f) by proceeding this way, it is nec-
essary to evaluate the impairment of previously optimized measurements. This is
done in table 5.11.

When considering response time evaluated in the dimensions reinforcement and gap
(for singleton target words only), a slight impairment can be observed after eval-
uation step 2 (optimizing spreading for false alarm rate regarding the cluster di-
mension). In workload modes Low and High, optimization of the distractor factor
(evaluation step 3) leads to an improvement in fitness. Since the response times
yielded by the model are always expected response times, a more accurate predic-
tion of response time in case of a failure to retrieve improves also the expected values
of the response time for target words.

When considering hit rate evaluated in the dimensions reinforcement and gap, again
a slight impairment by introducing spreading can be observed. As probability of
retrieval of target words is used to predict hit rates, and as probability of retrieval
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is not dependent on the response time, the fitness values of evaluation step 2 and 3
should not differ since only response time is influenced in evaluation step 3. However,
the fitness value in workload mode Low decreases from −0.054 after evaluation
step 2 to −0.048 after evaluation step 3. The only reasonable explanation of this
effect is the nondeterminism of the underlying experiment run generator script which
generates the data needed for performing simulation and hence for calculating fitness
values. Although the influence of the randomization used in this script should be
rather small, it seems to account for a difference of 0.006 in the fitness value.

This effect is even more obvious when considering false alarm rate in the cluster
dimension: The difference between the fitness values after evaluation step 2 and
evaluation step 3 are 0.070, 0.066 and 0.045, respectively. This can be explained
by the way false alarm rate and fitness value are obtained: False alarm rate is
computed as probability of retrieval of distractor words, whereas hit rate is computed
as probability of retrieval of target words. This means that false alarm rate and hit
rate are influenced in the same order of magnitude by the nondeterminism of the
experiment run generator script. Fitness values are computed as weighted sum of
average relative errors. Since the false alarm rate has markedly lower values than
the hit rate, variations in similar order of magnitude will have larger impact on
the relative error regarding the false alarm rate than on the relative error regarding
the hit rate. In simplified terms, the fitness value of the false alarm rate is more
sensitive to variations in the predicted false alarm rates because it operates on
smaller numbers.

The values for response time evaluated in the dimensions target and cluster show
that introducing the distractor factor f leads to a significant improvement in fitness
for workload modes Low and High, as discussed in section 5.2.4. The fact that the
previous introduction of spreading led to a slight improvement in workload modes
Low and High is caused by the difference in activation between singleton and
cluster words provided by the spreading activation.

When comparing the fitness values of the different workload modes, the following
observations can be made: When considering hit rate, fitness values decrease with
increasing workload, whereas for false alarm rate, the fitness values increase with
increasing workload. For response time, no such tendency is observable. The absence
of a general tendency (e.g. fitness values of None being always better than fitness
values of Low and High) indicates, that the model is not specialized to one of the
workload modes and only partially transferable to the remaining two.

5.3 Summary

By using a genetic optimization algorithm and a step-by-step approach, the model
devised in chapter 4 has been optimized and evaluated. These are the key findings
from this section:

• The effects of reinforcement and gap can be reproduced in all workload modes.

• Modeling different workload modes by using different parameter sets yields
good results. These results are especially better than the results obtained by
using one model (the one of workload mode None) for all workload modes.
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• The effects of cluster can be reproduced qualitatively, but not qualitatively by
using the implemented spreading algorithm. Results are markedly better with
activated spreading in comparison to deactivated spreading.

• The effects of target cannot be predicted by the model accurately. The ap-
proach of considering activation (multiplied by a distractor factor f) when
computing the response time generally leads to a better fit against the data
obtained in the experiment. However, the results regarding the target dimen-
sion are clearly not satisfying.

• By using the step-by-step approach, the results of a previous step are only
slightly impaired when doing the next evaluation step.

The main question stated in the introduction was: ”Can models of human memory
like the ACT-R declarative module be adapted to different workload settings by
modifying the model’s free parameters in a plausible way, or is it necessary to devise
completely or partially new models for human memory under workload?” According
to the evaluation, this question can be answered in the following way: It is in general
possible to transfer a memory model to different workload settings. The parameter
modifications necessary to adapt the model to these different workload settings are
reasonable for all parameters except the distractor factor. However, since the effects
of target could not be reproduced by using the distractor factor, this is not caused by
the model’s non-transferability to different workload modes, but rather by a general
shortcoming regarding this point.

The second question stated in the introduction section was: ”Moreover, if differ-
ent workload modes can be simulated by modifying the model’s parameters, how
do these parameter modifications influence the model’s behavior?” According to the
evaluation, this question can be answered in the following way: The decay parameter
d rises with increasing workload, which leads to a faster decline in base level acti-
vation and therefore to faster forgetting. Also the retrieval threshold τ rises with
increasing workload. This means that memory elements need a higher activation
value to be retrieved from memory. The retrieval sensitivity s, which controls the
slope of the retrieval probability curve, also grows with increasing workload. This
can be interpreted as decision making becoming more binary under high workload.
Also the spreading potential Pspread rises with increasing workload, which suggests
that spreading and therefore learning words as clusters become more important un-
der high workload. Finally, the distractor factor f also has an ascending tendency
with increasing workload. This can be interpreted as the response time difference
between cluster distractors and singleton distractors becoming larger with increasing
workload. However, this is not in line with the experiment results.

In total, the evaluation shows that the approach of transferring a memory model
to different workload stage by modifying its parameters is reasonable, although the
evaluated model still has potential for improvement.
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6. Conclusion

In this thesis, the performance of human memory under cognitive workload was ex-
amined by conducting a psychological experiment. Moreover, a model for predicting
the observed effects was devised.

The conducted experiment used the method of recognition test for measuring the
memory performance and the method of divided attention to create three different
workload modes which were labeled as None, Low and High. The secondary
task used in the experiment was based on the switching task and had two levels
of difficulty. As the experiment results show, there were significant effects in the
dimensions workload, target, cluster, reinforcement and gap.

Based upon the ACT-R declarative module and LTMC , the WorkloadMemoryModel
(WMM) was devised which uses WordNet as underlying database. However, this
database had to be modified to satisfy the model’s needs.

As its evaluation showed, the WMM is capable of predicting the mean values of
response time, hit rate and false alarm rate. As the differences between cluster
words and singleton words can be predicted qualitatively, but not quantitatively,
further research regarding the spreading approach is advised. The parameter values
across the different workload modes follow an interpretable and plausible tendency.
The single exception is caused by a general model weakness in predicting effects of
target and can therefore not be assigned to the model’s transferability to different
workload modes.

In summary, this thesis proved that it is possible to model the influence of cognitive
workload on human memory performance by using a model with modified parameters
for each workload mode. However, the devised model is of course only a first step in
the attempt to build workload-aware user interfaces: It operates on a rather artificial
setting and the current workload is given a priori.

The results of this thesis leave space for further research:

• The effects observed in the cluster dimension are not fully explainable by
theories like the Shared Time Model by Craik et al. (1996) [3]. More research
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is necessary in order to include this effects in existing explanation theories or
to come up with a new theory. Furthermore, some effects on response time
require further investigation.

• Moreover, since the WordNet database has turned out to be unsuitable in this
field of research, the model should be evaluated again when using a database
more adapted to everyday knowledge (e.g. ConceptNet).

• The response time effect of target and the response time effect of cluster on dis-
tractor words cannot be predicted by the WMM. Further research is required
to eliminate this shortcoming of the WMM.

• Furthermore, the WMM simply manages one parameter configuration for each
workload mode. However, some tendencies could be observed regarding the
parameters, e.g. the decay parameter d increases with higher workload. Fur-
ther research using different secondary tasks could confirm or falsify these
tendencies. In case they are confirmed, the attempt could be made to extract
a workload factor w out of the WMM equations, so that there is only one
parameter configuration for all workload modes and only the workload factor
is changing across workload modes.

• Of course, also integration with other models should be a major aspect of
further research. For example, the WMM can be combined with a workload
recognizing system in contrast to giving the workload state a priori as it has
been done for the scope of this thesis. Especially this integration with other
models and systems is crucial for making a step towards the goal of workload-
aware and adaptive user interfaces.
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A.1 Word Lists

A total number of six word lists was used for the experiment. Each word list con-
tained a total number of 54 German nouns. 24 of them were cluster words that
belonged to a cluster and 30 of them were singleton words that did not belong to a
cluster. Three words of each cluster were used as target words and the remaining
three words of that cluster were used as distractor words. Twelve singleton words
were used as target words, twelve were used as distractor words and the remaining
six singleton words were used as filler words that were learned but never retrieved.

A.1.1 Word List 1

• Cluster 1: Bier, Wein, Whiskey, Rum, Sekt, Wodka

• Cluster 2: Kuh, Löwe, Tiger, Hund, Katze, Pferd

• Cluster 3: Blau, Rot, Grün, Gelb, Schwarz, Weiß

• Cluster 4: Stuhl, Tisch, Bett, Sofa, Lampe, Schrank

• Singletons: Welt, Physik, Fleisch, System, Milch, Besitzer, Gesetz, Qual,
Ecke, Eisenbahn, Schild, Hemd, Sprache, Material, Markt, Träne, Fell, Zelle,
Monster, Spur, Bettler, Tinte, Lärm, Vorlesung, Kuss, Geruch, Flasche, Länge,
Spiel, Verletzung

A.1.2 Word List 2

• Cluster 1: Eisen, Kupfer, Stahl, Zinn, Bronze, Nickel

• Cluster 2: Öl, Benzin, Kohle, Holz, Kerosin, Petroleum

• Cluster 3: Tante, Onkel, Vater, Mutter, Bruder, Schwester

• Cluster 4: Kirche, Tempel, Kapelle, Moschee, Schrein, Kloster
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• Singletons: Verb, Katastrophe, Boss, Turm, Forschung, Strom, Balkon, Wolle,
Lied, Mond, Wunder, Freund, Luft, Umfrage, Wärme, Kissen, Wand, Geheim-
nis, Hafen, Teddy, Vertrag, Geldbeutel, Atom, Armee, Jungfrau, Rauch, Form,
Fenster, Flugzeug, Oase

A.1.3 Word List 3

• Cluster 1: Messer, Gabel, Löffel, Pfanne, Topf, Mixer

• Cluster 2: Arzt, Richter, Lehrer, Ingenieur, Schreiner, Händler

• Cluster 3: Jahr, Tag, Monat, Stunde, Minute, Woche

• Cluster 4: Brief, Novelle, Buch, Roman, Zeitung, Gedicht

• Singletons: Magnet, Stift, Schlüssel, Karotte, Mehrheit, Eigentum, Brei,
Batterie, Prärie, Bildung, Kandidat, Lächeln, Fahrkarte, Maschine, Schock,
Klavier, Spatz, Armut, Eimer, Getreide, Geschenk, Baron, Herd, Walzer,
Sklave, Strafe, Patent, Winkel, Video, Stil

A.1.4 Word List 4

• Cluster 1: Arm, Bein, Kopf, Auge, Fuß, Nase

• Cluster 2: Apfel, Orange, Banane, Kirsche, Birne, Pfirsich

• Cluster 3: Berg, Hügel, Tal, Fluss, Felsen, See

• Cluster 4: Granate, Pistole, Gewehr, Bombe, Schwert, Knüppel

• Singletons: Verkleidung, Schaum, Hochzeit, Schule, Gerücht, Witz, Galerie,
Geist, Stern, Mast, Weihnachten, Lagerfeuer, Keller, Heizung, Gefängnis, Pro-
ton, Wiege, Partei, Rassel, Rezept, Produkt, Seite, Absicht, Auto, Tabak,
Reise, Baby, Fliege, Gewicht, Münze

A.1.5 Word List 5

• Cluster 1: Haus, Apartment, Hütte, Hotel, Villa, Schuppen

• Cluster 2: Diamant, Rubin, Smaragd, Saphir, Perle, Opal

• Cluster 3: Basketball, Tennis, Schwimmen, Fußball, Golf, Hockey

• Cluster 4: Salz, Pfeffer, Zucker, Knoblauch, Vanille, Zimt

• Singletons: Blut, Dorf, Licht, Schach, Fremder, Wissen, Koffer, Fußboden,
März, Arie, Stille, Internet, Inhalt, Senf, Rabbi, Pfeil, Einwohner, Ersatz, Bild,
Emotion, Richtung, Eiche, Muskel, Paar, Funke, Präsident, Schiff, Bürste,
Jazz, Zeichen
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A.1.6 Word List 6

• Cluster 1: Mord, Raub, Diebstahl, Überfall, Einbruch, Betrug

• Cluster 2: Hammer, Säge, Nagel, Hobel, Meißel, Zange

• Cluster 3: Hurrikan, Tornado, Regen, Schnee, Hagel, Sturm

• Cluster 4: Frankreich, USA, Russland, England, Kanada, Spanien

• Singletons: General, Meter, Baum, Junge, Dreieck, Durst, Dreck, Seil, Masern,
Leder, Puppe, Taschentuch, Flagge, Rohr, Karneval, Gnade, Beule, Fass,
Traum, Köder, Ordner, Magie, Handtuch, Uhr, Garten, Computer, Pflug,
Distanz, Judo, Krankheit

A.2 Block Structure

Table A.1 shows the basic structure of a block. The codes used can be interpreted
in the following way:

• The first character indicates the times of reinforcement. So ”1” stands for
”reinforced once” and ”2” stands for ”reinforced twice”. ”D” encodes distractor
words that were never learned.

• The second character indicates whether the word is retrieved with or without
a gap. ”0” stands for ”direct retrieval” and ”1” stands for ”delayed retrieval”.
”D” again encodes distractor words and ”F” encodes filler words that will never
be retrieved.

• The third character indicates whether this is a cluster word or a singleton
word. ”C” stands for ”cluster word” and ”S” stands for ”singleton word”.

• The fourth character is simply a counter that represents this element’s index
within its class. So ”a” stands for ”first element”, ”b” for ”second element” and
so on.

So for example ”10Ca”can be decoded as ”first (a) cluster (C) word that is reinforced
once (1) and retrieved without a gap (0)”, whereas ”DDSc” can be decoded as ”third
(c) singleton (S) distractor (D) word”.

Whereas the assignment of a word to the cluster property is given a priori (see
section A.1), the assignment to the other properties (target, reinforcement, gap)
and to the order within a set is done randomly.

A.3 Word List and Workload Mode Combinations

Table A.2 describes the combinations of word lists and workload modes for all par-
ticipants. Participant IDs start at 4 because the IDs 1 to 3 have been used for a
preliminary study.
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Table A.1: This table shows the basic structure of a block.
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Participant ID Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

4 6 H 4 L 2 N 1 H 5 L 3 N
5 1 H 2 N 6 L 3 H 5 N 4 L
6 3 H 4 N 5 L 6 N 1 H 2 L
7 4 N 5 H 3 L 6 N 2 L 1 H
8 6 L 5 H 4 N 3 H 2 N 1 L
9 3 N 4 H 2 L 5 H 1 N 6 L
10 1 N 5 H 3 L 2 H 6 L 4 N
11 6 L 1 H 5 N 2 H 4 L 3 N
12 1 N 6 L 5 H 4 L 3 N 2 H
13 5 H 6 N 1 L 2 N 3 L 4 H
14 6 H 1 L 2 N 3 L 4 H 5 N
15 4 N 5 H 6 L 1 N 2 H 3 L
16 2 H 6 L 4 N 3 H 1 N 5 L
17 3 L 2 N 1 H 6 N 5 H 4 L
18 5 N 3 L 1 H 6 N 4 H 2 L
19 4 N 3 L 2 H 1 L 6 H 5 N
20 5 L 6 N 4 H 1 L 3 N 2 H
21 5 L 4 N 3 H 2 N 1 L 6 H
22 1 L 2 H 3 N 4 L 5 N 6 H
23 3 H 1 N 5 L 4 H 2 L 6 N
24 2 L 3 N 4 H 5 L 6 H 1 N
25 4 H 2 L 6 N 5 L 3 N 1 H
26 2 N 1 L 6 H 5 N 4 L 3 H
27 2 L 3 H 1 N 4 L 6 H 5 N

Table A.2: This table shows the combinations of word lists and workload modes for
all participants. Each cell contains the number of the used word list followed by a
letter indicating the workload mode. For example, ”6 H” in row ”4” and in column
”Block 1” means that word list 6 was used under workload mode High in the first
block for participant 4.
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Reinforcement
reinforcement 1 reinforcement 2

Overall 1.02777 (0.58148) 0.96051 (0.64154)
None 0.94857 (0.49096) 0.82878 (0.33419)

Gap
gap 0 gap 1

Overall 0.95631 (0.66452) 1.03197 (0.55452)
None 0.84588 (0.37210) 0.93148 (0.46667)
Low 0.94776 (0.48950) 1.03638 (0.53913)

Target
distractor target

Overall 1.03033 (0.54242) 0.99414 (0.61308)
None 0.96534 (0.47004) 0.88868 (0.42403)
Low 1.04170 (0.61170) 0.99207 (0.51698)

Correct
incorrect response correct response

Overall 1.25493 (0.84462) 0.95666 (0.48194)
None 1.30584 (0.69007) 0.89413 (0.40571)
Low 1.21872 (0.66193) 0.96474 (0.52698)
High 1.2672 (0.99440) 1.02705 (0.50851)

Cluster (only distractor words)
cluster distractors singleton distractors

Overall 1.06720 (0.59987) 0.99347 (0.47544)
None 1.01828 (0.52850) 0.91240 (0.39665)
High 1.11655 (0.56299) 1.05137 (0.49299)

Cluster
cluster singleton

None 0.95441 (0.50567) 0.89969 (0.38271)

Table A.3: Table showing mean values and standard deviations (the latter noted in
brackets) for all observed effects regarding response time. Response time is given in
seconds.

A.4 Results

The tables in this chapter contain the mean values and standard deviations for all
significant effects mentioned in section 3.2. Table A.3 shows the values for response
time effects, table A.4 the values for response time effects when only considering
correct responses. Table A.5 shows the values regarding hit rate effects and table
A.6 the values regarding false alarm rate effects. Standard deviation is respectively
noted in brackets behind the mean value.
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Reinforcement
reinforcement 1 reinforcement 2

Overall 0.92747 (0.48183) 0.87689 (0.39910)
None 0.87880 (0.42435) 0.79618 (0.28762)

Gap
gap 0 gap 1

Overall 0.86660 (0.43416) 0.93930 (0.44198)
None 0.80073 (0.29012) 0.87313 (0.42249)
Low 0.86831 (0.44402) 0.94776 (0.42155)
High 0.95786 (0.55926) 1.03884 (0.47818)

Target
distractor target

Overall 1.00067 (0.50834) 0.89981 (0.43916)
None 0.94761 (0.43574) 0.83524 (0.36099)
Low 1.01012 (0.58196) 0.90387 (0.43563)
High 1.04921 (0.49537) 0.99328 (0.52649)

Cluster (only distractor words)
cluster distractors singleton distractors

Overall 1.03244 (0.56750) 0.97030 (0.44256)
None 0.98647 (0.47009) 0.91005 (0.39657)

Cluster
cluster singleton

None 0.91251 (0.44602) 0.87589 (0.36057)

Table A.4: Table showing mean values and standard deviations (the latter noted in
brackets) for all observed effects regarding response time for correct responses only.
Response time is given in seconds.
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Reinforcement
reinforcement 1 reinforcement 2

Overall 0.64352 (0.31430) 0.77662 (0.28055)
None 0.82813 (0.24114) 0.92361 (0.16344)
Low 0.59722 (0.30856) 0.76042 (0.29423)
High 0.50521 (0.29732) 0.64583 (0.29068)

Gap
gap 0 gap 1

Overall 0.77141 (0.27597) 0.64873 (0.32043)
None 0.91667 (0.16710) 0.83507 (0.24119)
Low 0.75000 (0.28741) 0.60764 (0.31996)
High 0.64757 (0.28576) 0.50347 (0.30123)

Cluster
cluster singleton

Overall 0.74306 (0.28817) 0.67708 (0.31804)
Low 0.72569 (0.29538) 0.63194 (0.32171)
High 0.61806 (0.29334) 0.53299 (0.30520)

Table A.5: Table showing mean values and standard deviations (the latter noted in
brackets) for all observed effects regarding hit rate.

Cluster
cluster singleton

Overall 0.10359 (0.11959) 0.06192 (0.11226)
None 0.05208 (0.06345) 0.01910 (0.04934)
High 0.15625 (0.15243) 0.09028 (0.12845)

Table A.6: Table showing mean values and standard deviations (the latter noted in
brackets) for all observed effects regarding false alarm rate.
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B.1 Experiment scripts

This section describes the scripts used for conducting the experiment.

B.1.1 Experiment Run Generator

The experiment run generator ”ExperimentRunGenerator.py” is a python script pro-
grammed using Python 2.7.2 and the IDLE development environment. This script
is used for generating the input files needed for the experiment script to conduct
one experiment run.

The following input files are needed (all contained in the directory ”raw data/”):

• id.txt: Contains the next participant’s id. IDs have to be in range [4,27] (IDs
1 to 3 have been used for a preliminary study and there are 24 participants).
This file is automatically updated by the script.

• configurations.txt: Contains 24 experiment run configurations (one in each
line) describing the order of word lists and workload modes. E.g. the configu-
ration ”6H,4L,2N,1H,5L,3N” means ”word list 6 in workload mode High, then
word list 4 in workload mode Low, then word list 2 in workload mode None,
...” (see also appendix A.3).

• singletonsX.txt: Contains the singleton words of word list X (with X in
range [1,6]) – one word per line and 30 words in total.

• clustersX.txt: Contains the cluster words of word list X (with X in range
[1,6]), again one word per line. Each of the cluster files contains 24 cluster
words with six subsequent words being interpreted as a cluster (which means
words 1 to 6 are interpreted as first cluster, words 7 to 12 as second cluster,
and so on).
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The script creates a mapping of the cluster and singleton words in the word lists
using the given configurations. This mapping is then used to create the input files
for the experiment script that contain the information of which word being learned
and retrieved when and how.

Since the output of this script is assumed to be the input of the experiment script,
it is written in the directory ”input/”.

B.1.2 Experiment Script

The experiment script ”Workload Memory Task.psyexp” was designed using the
PsychoPy 2 framework (version 1.73.06). See Peirce (2007) [24] and Peirce (2009)
[25] for more information about this framework.

The experiment script needs the following input files in the folder ”input/”:

• blockX/: These folders (X in range [1,6]) contain the files generated by the
experiment run generator. Each folder contains files ”learnY.csv” and ”tri-
alY.csv” (Y in range [1,6]) containing the information about words to learn
during the Y’th learning phase and words to retrieve during the Y’th retrieval
phase, respectively. Moreover, a file ”filenames.csv” is included which is used
by the script to navigate through the folder.

• overview.csv: This file is used for navigation through the block folders and
is also generated by the experiment run generator.

• training none/, training low/ and training high/: These folders contain
the information needed for the training blocks. They are similarly structured
as the ”blockX/” directories but have only four learning and retrieval phases.

• training overview.csv: This file is used for navigation through the training
folders.

• soundfiles.csv: This file contains a list of file names. The referenced sound
files contain the digits used for the secondary tasks.

In the directory ”sounds/”, there are ten sound files containing the digits used for
the secondary task.

Before each run of the experiment script, the experiment run generator must be
executed to generate a new experiment configuration for the new participant. When
starting the experiment script, the experimenter is asked to provide participant name
and session number.

The results of the experiment run will automatically be stored in the directory
”data/”. PsychoPy provides a plethora of files, but for further analyzing, only one
file is of interest: ”NAME DATEtrials.csv” with NAME being the name entered as
participant name and DATE being the date and time when the experiment run was
started.
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B.1.3 Result Converter

The result converter ”ResultConverter.py” was also written using the PsychoPy 2
framework.

When started, a prompt asks the user to select files to convert for analyzing. These
files must all be the ”NAME DATEtrials.csv” files mentioned above.

The result converter requires a directory ”clusters/” containing files ”cluster0.txt” to
”cluster23.txt” which in turn contain the words belonging to a cluster.

The converter then computes hit rate, false alarm rate and accuracy and creates three
csv output files: ”rt table.csv” (contains response times), ”hit table.csv” (contains
hit rates) and ”fa acc table.csv” (contains false alarm rates and accuracy).

These output files can then be analyzed, e.g. by using the statistical toolkit R.

B.2 Memory Model Program

The program ”workload.jar” contains both the optimizing algorithm described in 5.1
and a simulator that uses the model to predict human memory performance.

B.2.1 Usage

The program can be started with the command line arguments listed in table B.1.

The bits of the bit masks correspond to the parameters ”decay”-”intercept time”-
”retrieval threshold”-”spreading potential”-”distractor factor”-”retrieval sensitivity”.
If the bit of a parameter is set to 1, this parameter will be optimized. If the corre-
sponding bit is 0, the parameter will not be optimized but its default value will be
used. Per default, all bits in the masks are set to 1.

Each digit of the filter masks can have one of the following values:

• ”0”: Collapse across this condition (i.e. transform the two condition values
into one and compute overall mean).

• ”1”: Use only the first condition value.

• ”2”: Use only the second condition value.

• ”3”: Use both condition values.

The RT filter mask consists of four digits ”cluster”-”target”-”reinforcement”-”gap”,
the hit filter mask consists of three digits ”cluster”-”reinforcement”-”gap” and the
false alarm mask consists of one digit ”cluster”.

For example, the RT filter mask ”1033” means ”consider only singletons, collapse
over target and distractor words, and consider all different classes of reinforcement
and gap”, leaving the following classes: (cluster: singleton, reinforcement: 1, gap:
0), (cluster: singleton, reinforcement: 1, gap: 1), (cluster: singleton, reinforcement:
2, gap: 0), (cluster: singleton, reinforcement: 2, gap: 1)
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Argument Explanation

-sim Only a simulation is run and no optimizing takes place.
-noSpreading Deactivate spreading simulation.
-size Population size for optimization algorithm, defaults to 100.
-it Number of iterations for optimization algorithm, defaults to 1000.
-wRT Weight of relative error of response time for fitness function, de-

faults to 1.
-wHit Weight of relative error of hit rate for fitness function, defaults to

1.
-wFA Weight of relative error of false alarm rate for fitness function, de-

faults to 1.
-maskNone Bitmask enabling or disabling parameter optimization for workload

mode None.
-maskLow Bitmask enabling or disabling parameter optimization for workload

mode Low.
-maskHigh Bitmask enabling or disabling parameter optimization for workload

mode High.
-filterRT 4 digit filter mask encoding the classes to use for optimizing the

response time.
-filterHit 3 digit filter mask encoding the classes to use for optimizing the hit

rate.
-filterFA 1 digit filter mask encoding the classes to use for optimizing the

false alarm rate.

Table B.1: Table containing the command line arguments for the memory model
program and their explanation.
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As another example, the hit rate filter mask ”302” means ”consider both cluster and
singleton words separately, collapse over reinforcement and consider only words that
were retrieved with a gap”, leaving the classes (cluster: cluster, gap: 1) and (cluster:
singleton, gap: 1)

Per default, all digits of the masks are set to 3.

Consider the example in 5.2.1: To optimize only for the singleton target words
in reinforcement and gap condition with spreading deactivated, a population size of
100, 1000 iterations and equal importance of response time and hit rate, the program
should be called in the following way:

java -jar workload.jar -wFA 0 -maskNone 001001 -maskLow 101001 -maskHigh
101001 -filterRT 1133 -filterHit 133 -noSpreading

Since spreading is deactivated, it does not make sense trying to optimize the spread-
ing potential, so the corresponding bit in all masks is set to zero. Moreover, the
intercept time was defined to be 0.680 before, so its corresponding bit is also set to
zero. Since the decay parameter was set to 0.5 for the None mode, also that bit is
set to zero. Finally, f was kept constant zero, so the corresponding bit is not set.

For using the simulator, only two command line arguments are relevant: -sim and
-noSpreading. -sim indicates that the simulator should be started and the opti-
mizer will not be used, so it is always necessary when using the simulator. With
-noSpreading, spreading can be deactivated. Since all other command line arguments
have only an influence on the optimization algorithm, they are ignored in case -sim
is set. When a simulation is run, the workload model parameters are taken from
”defaultParams.csv” (see section B.2.2).

For example, to start a simulation with spreading activated, the program should be
called in the following way: java -jar workload.jar -sim

Generally, it is advisable to increase the JVM heap size by using the JVM argu-
ments ”-Xms” (starting heap size) and ”-Xmx” (maximum heap size). ”-Xms1024M
-Xmx2048M” has emerged as a good starting point.

B.2.2 Directory Structure and Needed Files

The memory model program needs to be run in a directory containing a subdirectory
”resources/” that contains the files and folders listed in table B.2.

The csv files all have a defined structure which is described in the following para-
graphs.

addedMemoryElements.csv has two columns: id and string with id containing
a unique ID for the new memory element (must not be already in use by WordNet)
and string containing a string representation of the new memory element.

addedPointers.csv has two columns: parent id and child id. Each row represents
a bidirectional edge between two synsets which are named by their synsetID.

defaultParameters.csv has six columns. Each row is interpreted as parameter
configuration for one workload mode (in order None, Low, High).

• decay : the decay parameter d.
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Directory / file name Description

addedMemoryElements.csv Contains a list of memory elements added to the
WordNet database.

addedPointers.csv Contains the pointers added to the WordNet
database.

defaultParameters.csv Contains the default parameter configurations for the
three workload modes. Those will be used for a sim-
ulation run and as a default value for optimization (if
the corresponding bit in the bit mask is set to zero).

dict/ Contains the WordNet dictionary information. This
is simply the ”dict/” directory of any WordNet distri-
bution.

dictionary.csv Provides a translation between the word strings (as
used in the experiment) and corresponding WordNet
synset IDs.

ExperimentRunGenerator.py Python script for generating the data for a new exper-
iment run that will be stored in the ”input/” folder.
See section B.1.

input/ Contains the information of the current experiment
run. Will be updated by ExperimentRunGenera-
tor.py. See also section B.1. Contains also the actual
experiment’s results.

parameterRanges.csv Defines the legal ranges for the parameters. This will
be used by the optimizer to systematically search for
legal solutions.

raw data/ Contains the word lists. See section B.1.

Table B.2: Table showing the files and subdirectories needed to run the memory
model program.
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• intercept : the intercept time I.

• retrieval threshold : the retrieval threshold τ .

• spreading potential : the spreading potential Pspread.

• distractor factor : the distractor time factor f .

• retrieval sensitivity : the retrieval sensitivity s.

dictionary.csv has two columns: word and id. Each row is interpreted as a tuple
and defines a mapping between a word and the ID of the corresponding synset.

parameterRanges.csv has 12 columns and should contain only one row of data.
The columns are decay min, decay max, intercept min, intercept max, thresh min,
thresh max, spread min, spread max, distr min, distr max, , sensitivity min and
sensitivity max, . They define the legal values for the parameters listed in default-
Parameters.csv by defining a minimum and a maximum value.

The directory input/ contains the information for the current experiment run, but
it also contains the experiment results used for optimizing the model. They are
located in the subdirectory input/experiment results/. The file filenames.csv
has three columns rt file, hit file and fa file that contain the relative path for the files
containing response times, hit rates and false alarm rates for the workload stages.
Again, each row is interpreted as one workload mode (in order None, Low, High).

The referenced files themselves contain only a single column called mean. In this
column, the mean values for the different subsets are listed. Table B.3 contains a
table showing the order of the subsets within the mean column. The codes can be
interpreted in the following way:

• S stands for ”singleton”, whereas C stands for ”cluster”.

• T stands for ”target word”, whereas D stands for ”distractor word”.

• R1 stands for ”reinforced once” and R2 stands for ”reinforced twice”.

• G0 stands for ”retrieved without a gap” and G1 stands for ”retrieved with a
gap”.

So for example, ”S-T-R2-G0” is the subset of singleton (S) target words (T) that
have been reinforced twice (R2) and that are retrieved without a gap (G0).

Once the program is started, it will print a log file output/log.txt. Moreover,
the simulation results are saved in output/stats.csv. The latter file has only
one column mean which contains the mean values for the different variables in the
different sets. The mean values are in the same order as shown in table B.3. The
different variables are listed in the following order: response time, hit rate, false
alarm rate. They are separated by the string ”newTargetValue”. First, all variable
means of workload mode None are listed, then all of workload mode Low and
then all of workload mode High. Workload modes are separated by the string
”NEW WORKLOAD”.

Moreover, there is a spreadsheet GraphGenerationSpreadsheet.ods which can
be used to analyze the simulation results and to obtain the graphs used in chapter
5 by simply pasting the content of stats.csv for different evaluation steps.
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response time hit rate false alarm rate
S-T-R1-G0 S-R1-G0 S
S-T-R1-G1 S-R1-G1 C
S-T-R2-G0 S-R2-G0
S-T-R2-G1 S-R2-G1
S-D C-R1-G0
S-D C-R1-G1
S-D C-R2-G0
S-D C-R2-G1
C-T-R1-G0
C-T-R1-G1
C-T-R2-G0
C-T-R2-G1
C-D
C-D
C-D
C-D

Table B.3: This table shows the order of the subsets.
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