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Abstract. This paper gives an overview over di�erent methods for pre-
dicting time series. General concepts regarding time series prediction are
introduced. Then, both linear methods (with focus on ARIMA) and non-
linear methods (with focus on Multi Layer Perceptrons) are presented.
Approaches to combine di�erent methods are discussed, including a hy-
bridization of ARIMA and MLP and the more general approach of en-
sembles. Moreover, in addition to the widespread single-point predic-
tion, the concept of prediction intervals is presented and practical ap-
proaches of estimating such prediction intervals (namely ensemble-based
approaches and conformal predictors) are discussed.
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1 Introduction

Predicting the future is a task being carried out by humans every day, signif-
icantly in�uencing their behavior. For instance, the weather forecast tries to
predict the weather conditions for the next hours and days. One might base the
decision whether or not to take an umbrella or the decision whether or not to
plan a picnic for the weekend on this forecast.
Hawkins even argues that predicting the future is not just an important task,
but that

�[p]rediction is not just one of the things your brain does. It is the primary
function of the neocortex, and the foundation of intelligence.� [11]

Besides this rather philosophical aspect, making accurate predictions is cru-
cial in many applications � knowing something about the future usually is a
major advantage. Wong [31] argues that every important business decision is
based on some sort of forecast, and Silipo & Winters [24] note that a 1% in-
crease in prediction accuracy can lead to operational cost savings of 10 million
pounds. Therefore, accurate forecasts are of real business value.



Some forecasting examples include electricity prices, water �ows, sunspot ac-
tivity, tourist arriving patterns, exchange rates, stock prices or the number of
airline passengers.
In all of these examples, the basic problem is to use past observations of a vari-
able to predict its future values. For the exchange rate example, this can be
formulated as �given the USD-EUR exchange rates of the last two weeks � what
will be tomorrow's USD-EUR exchange rate?�. If the forecast made in this sce-
nario is su�ciently accurate, it can lead to considerable savings. For instance,
an international company can optimize the scheduling of their international wire
transfers based on this forecast, in order to minimize the conversion loss.
Also for the other examples, one can easily see that they use past values to pre-
dict future ones. Again, accurate predictions can be used for an optimization of
some kind, may it be scheduling like in the exchange rate example or an airline's
decision whether or not to buy additional planes. Usually, these optimizations
will help to lower costs or to increase pro�ts.
The examples illustrate the need for accurate predictions and their importance
to business decisions. This paper will explain in more detail how the general
problem of time series prediction can be approached.

The remainder of the paper is organized as follows: Section 2 contains the
problem statement and gives an overview over general concepts regarding time
series prediction. Section 3 presents linear methods in general and the ARIMA
approach in more detail. Section 4 covers nonlinear methods and focuses on
Multi Layer Perceptrons. Section 5 discusses di�erent approaches to combine
multiple methods. Section 6 motivates the use of predictive intervals and shows
di�erent methods of approximating them. Section 7 summarizes the key insights
of this paper and gives an outlook on open research questions.

2 Background

There exists a wide variety of models used for predicting time series. This sec-
tion's purpose is both to state the general problem of time series prediction and
to give an overview of general concepts regarding time series prediction.

The mathematical elements dealt with in time series prediction are time se-
ries. A time series is de�ned as a sequence of chronologically ordered values of
the same variable measured at di�erent points in time. An example would be
the temperature at a certain location, being measured every day at noon for the
last 7 days, with values of 23.3 ◦C, 26.4 ◦C, 26.2 ◦C, 26.3 ◦C, 22.1 ◦C, 24.2 ◦C
and 26.6 ◦C.
The problem of time series prediction can informally be stated as extrapolating
the given time series one or multiple time steps into the future. For the given
temperature example this could be stated as �given this time series of tempera-
ture data, what are the most likely temperature values to follow?�



Let Y be the time series variable to predict. Let Yt denote the value of Y
at time t. A general assumption is that the time interval between two measure-
ments of Y is kept constant. Then, the problem of time series prediction can be
de�ned as follows:

Given Yt−l, ..., Yt, predict the value of Yt+k.

Here, l is called the lag (or the window size) and denotes how many time steps
into the past are considered, whereas k is called the lead time and denotes the
number of time steps ahead of t to be forecast. k = 1 gives a one-step ahead
prediction (or short-term prediction). Any greater value of k gives a so-called
multi-step ahead prediction (or long-term prediction).
Although multi-step ahead prediction is a very interesting research topic, it tends
to be more complicated than one-step ahead prediction. Therefore, this paper
will put its focus on one-step ahead prediction.

Let Ŷt+k be the prediction for Yt+k. Then,

Yt+k = Ŷt+k + εt+k

with εt+k being the prediction error. Clearly, for a good prediction, the goal is to
minimize εt+k. An alternative way of formulating the problem is the following:
Find a function f such that

Ŷt+k = f(Yt−l, ..., Yt) with |Yt+k − Ŷt+k| being minimized.

How f will look like is mainly determined by the forecasting method being used.

A forecasting method is a general approach to solving the time series predic-
tion problem. Most forecasting methods include the step of �tting a forecasting
model against the data (i.e. optimizing some parameters). In [4], Chat�eld points
out the distinction between �forecasting method� and �forecasting model� and
argues that the terms should not be used interchangeably: There are forecast-
ing methods that involve �tting a forecasting model (e.g. ARIMA, ANNs), but
there are also forecasting methods that do not make use of a forecasting model
(e.g. the naive method, where Ŷt+1 = Yt, does not contain any parameters to be
optimized).

Of course, if there already is a good model of the application domain and
the underlying process generating the observed time series, this model can and
should be used to predict future values of the time series. Amjady [2] calls this
a white box approach.
If, however, no such model is available (which often means that the underlying
process is unknown or poorly understood), the more general forecasting methods
presented in this paper can be used [33]. This is called a black box approach.



So far, only univariate time series prediction has been discussed, where all
parameters of f are past values of Y . In multivariate time series prediction,
however, f can also take other parameters as input [5]:

Ŷt+k = f(Yt−l, ..., Yt, X
(1), ..., X(n))

The temperature example from the beginning of this section can be extended to
a multivariate prediction problem, if in addition to previous temperature values
also the current wind strength is used for the prediction.
Multivariate time series prediction tends to be much more complex than uni-
variate time series prediction. Moreover, it is being less applied in practice [8].
Therefore, we will focus on univariate time series prediction for the scope of this
paper.

Yadav & Toshniwal [32] and Wong [31] list four major components that can
be used to characterize a time series:

� Trend Component T : The general movement of the time series mean over
a long period of time. Often, a linear trend is assumed.

� Cyclic Component C: The long term oscillation of the time series. May
be periodic or not.

� Seasonal Component S: A systematic, mostly calendar-related oscillation.
� Random Component R: Random �uctuation in the data. Mostly assumed
to be normally distributed with zero mean.

The value of the time series Y at time t can then be expressed by multiplying
these components:

Yt = Tt · Ct · St ·Rt
According to Wong [31], the random component R can further be divided into
two parts: a pseudo-random component created by a deterministic process, and a
component entirely created by stochastic noise. Furthermore, Wong argues that
it is possible to model and hence predict the pseudo-random component.

If there is no trend component, a time series can be called stationary. More
precisely, a time series is called stationary if its mean and variance are not chang-
ing over time. For some forecasting methods (e.g. ARIMA) it is important that
the time series under analysis is made stationary before applying the method
itself.

An important concept when talking about time series is autocorrelation. It
describes the correlation between di�erent measurements of the observed vari-
able, i.e. the correlation of Yt and Yt−m for some 0 ≤ m ≤ l. This autocorrelation
is usually high for small lags (i.e. small values ofm) and for lagsm corresponding
to the length of a cycle or season [5].
Note that the whole �eld of time series prediction is based on the assumption
that there is some autocorrelation in the data, i.e. that future values depend on
past values to at least some extent.



To evaluate the performance of a forecasting method, di�erent accuracy mea-
sures can be used. De Gooijer & Hyndman [8] provide a thorough list of such
accuracy measures, including the most commonly used mean squared error. As
it is common in the �eld of machine learning, the accuracy measure is computed
on a test set separate from the training set which is exclusively used for training
the model. Usually, the test set for time series prediction tasks will be the most
recent historical data available, whereas the training set will consist of all older
data.

Forecating methods can be subdivided into two classes: linear methods and
nonlinear methods. Linear methods assume that the forecast Ŷt+k can be cal-
culated as a linear combination of the lag values and other values, if applicable.
These methods will be further explored in Section 3. Nonlinear methods do not
assume such a linear decomposition of the time series being analyzed. They will
be covered in more detail in Section 4. A detailed overview over di�erent linear
and nonlinear methods is given by De Gooijer & Hyndman [8].

3 Linear Methods

3.1 General Idea

Linear methods assume that any value of the time series can be expressed using
only linear relationships. Therefore, especially all linear regression methods are
linear methods. Although the theoretical assumption of linearity in the data
is not always satis�ed, linear methods still might yield good performance in
practice.
Ruta et al. [23] name two simple linear forecasting methods: the naive method
where

Ŷt+1 = Yt

and the simple moving average where

Ŷt+1 =
1

l + 1

l∑
i=0

Yt−i

Exponential smoothing is another simple method, given by the following equa-
tion:

Ŷt+1 = α · Yt + (1− α) · Ŷt

where α is the smoothing factor which determines the weighting of the actual
value in relation to the prediction.
Note that all three of these simple methods are special cases of the more general
ARIMA method [8] which will be presented in the remainder of this section.



3.2 ARIMA

�ARIMA� is an acronym for Auto Regressive Integrated Moving Average. The
ARIMA method has been the most popular linear method of the last decades
and is considered to be a well established time series prediction method. Ba-
sically, an ARIMA model consists of an autoregressive and a moving average
component. ARIMA models were introduced by Box & Jenkins [3]. In order to
fully motivate the ARIMA formulas, we will follow their step-by-step explana-
tion.

Let B be the backward shift operator :

B · Yt = Yt−1

B2 · Yt = Yt−2

...

Then the backward di�erence operator ∇ can be de�ned as:

∇Yt = Yt − Yt−1 = (1−B) · Yt

Furthermore, let at be a random variable at time t which is created by a white
noise process.

Assuming that the time series Y is stationary with mean µ, it can be ex-
pressed with a linear �lter model. Values of the time series are expected to be
distributed around the mean, based on the white noise process:

Yt = µ+ at + ψ1at−1 + ψ2at−2 + . . .

The assumption of stationarity of course requires
∑∞
j=0 |ψj | <∞. A more com-

pact way of expressing the above formula is

Yt = µ+ Ψ(B) · at
with Ψ(B) = 1 + ψ1B + ψ2B

2 + . . .

An Autoregressive (AR) model tries to model the deviations from the mean,
i.e.

Ỹt = µ− Yt
It expresses the current deviation as linear combination of previous deviations
plus the current white noise term and therefore can be written as

Ỹt = φ1Ỹt−1 + . . .+ φpỸt−p + at

with p being called the order of the AR model. This equation can be rewritten
to:

Φ(B) · Ỹt = at

with Φ(B) = 1− φ1B − . . .− φpBp



Also a Moving Average (MA) model considers the deviations from the mean.
It expresses the current deviation as linear combination of the current and pre-
vious white noise terms and can be written as

Ỹt = at − θ1at−1 − . . .− θqat−q

with q being the order of the MA model. This equation can again be rewritten
into a more compact form:

Ỹt = Θ(B) · at
with Θ(B) = 1− θ1B − . . .− θqBq

An Autoregressive Moving Average (ARMA) model is simply the combination
of an AR and an MA model:

Ỹt =

Autoregressive Model︷ ︸︸ ︷
φ1Ỹt−1 + . . .+ φpỸt−p + at − θ1at−1 − . . .− θqat−q︸ ︷︷ ︸

Moving Average Model

In a more compact form, it is also possible to write

Φ(B) · Ỹt = Θ(B) · at (1)

with Φ(B) and Θ(B) as de�ned above. For clearer distinction, p is now called
autoregressive order whereas q is called moving average order. An ARMA model
is usually speci�ed as ARMA(p,q). ARMA models obviously include all AR and
all MA models (for either p or q being set to zero). Note that it is possible to
compute Ỹt (and therefore Yt) by rearranging equation (1):

Ỹt = Φ(B)−1 ·Θ(B) · at

An Autoregressive Integrated Moving Average (ARIMA) model does not con-
sider deviations from the mean, but the actual time series values Yt. More-
over, the assumption of a stationary time series varying around a �xed mean is
dropped. The general idea is, that even for nonsationary time series, there might
still be some di�erence of the time series which is stationary. Box & Jenkins [3]
provide a more thorough argumentation of why this assumption is feasible.
An ARIMA model is de�ned by the following equation:

Φ(B) · ∇d · Yt = Θ(B) · at (2)

with Φ(B) and Θ(B) as de�ned above and d being the order of the �rst stationary
di�erence of the time series.
By de�ning

wt := ∇dYt
it is possible to write equation (2) like an ordinary ARMA equation:

Φ(B) · wt = Θ(B) · at



Depending on the application, it is also possible to set

wt := ∇d(Yt − µ)

The term Integrated in the ARIMA acronym stems from the following thought:
Once the wt has been determined, Yt can be calculated as

Yt = ∇−dwt

which roughly corresponds to an integration operation on wt. An ARIMA model
is usually speci�ed as ARIMA(p,d,q). Obviously, all ARMA models are also
ARIMA models (for d = 0).

In the original approach described above, di�erencing (i.e. repeatedly using
the backward di�erence operator ∇) is used to make a time series stationary.
Makridakis & Hibon [18] provide an alternative approach: they simply try to
remove the linear trend component of the time series. Their results indicate that
with a short lead time the di�erencing approach performs better, whereas with
longer lead time the removal of the linear trend outperforms the di�erencing ap-
proach. However, as they note, for most real world applications, the trend cannot
be safely assumed to be linear, so more complex methods might be needed to
remove also nonlinear (e.g. exponential) trend components.

After having de�ned the ARIMA model, there is still the open question how
one can �t an ARIMA model to data of a time series. The general guidelines
provided by Box & Jenkins [3] are now known as the "Box-Jenkins methodology".
Khashei & Bijari [14] describe this methodology on a high level, consisting of
three main phases:

� Model Identi�cation: Make the time series stationary (by identifying d)
and use certain autocorrelation properties to determine the model's orders
p and q.

� Parameter Estimation: Estimate the model parameters φi and θj , given
some error measure to minimize.

� Diagnostic Checking: Check if the model assumptions about the remain-
ing prediction errors are satis�ed.

Depending on the results of the diagnostic checking phase, these steps might be
repeated multiple times until a satisfactory model is selected.
The ARIMA method presented so far is univariate, but there are also multivari-
ate generalizations [8].

The ARIMA method was explicitly created to model and analyze time series.
Applying it to time series prediction is therefore very straightforward: First,
the ARIMA model is �t to the data of the time series, e.g. by using the Box-
Jenkins methodology. Then, the current and previous values are used as input to
the formulas. Finally, the formulas are rearranged to retrieve the mathematical
solution Ŷt+1 to the equations derived from the training data.



4 Nonlinear Methods

4.1 General Idea

In contrast to linear methods, nonlinear methods allow for more complex than
only linear relationships within the data. Nonlinear methods include most ma-
chine learning techniques like support vector machines, hidden Markov models
and arti�cial neural networks (ANNs). Especially ANNs are applied widely due
to their inherent �exibility.

Nonlinear methods work especially well with nonlinear data (and most real-
life systems are nonlinear in nature or at least contain a signi�cant nonlinear
component), but the results of applying them to linear data has yielded mixed
results. Therefore, they cannot be considered a �silver bullet� and should not
be blindly applied to every forecasting problem [14]. The following subsections
will take a closer look at the Multi Layer Perceptron (MLP), which is the most
commonly used ANN type, and at approaches based on pattern matching.

4.2 Multi Layer Perceptron

ANNs in general are neurobiologically motivated machine learning techniques
which try to mimic the network of neurons found in human brains. This intro-
duction into MLPs is necessarily brief. It is mainly based on Mitchell's work [21],
which provides a very detailed description of the MLP approach.

Fig. 4.2.1. Illustration of a simple perceptron with index j.

The basic unit of any ANN is an arti�cial neuron, which in Multi Layer
Perceptrons is called a perceptron. Figure 4.2.1 shows such a perceptron with



index j. It takes a vector of inputs (x1, . . . , xn) where each input xi has an
associated weight wji. The perceptron then takes the weighted sum of the inputs∑n
i=1 wjixi and adds so-called bias term wj0. In order to write this sum nicely,

often a so-called �bias unit� x0 = 1 is introduced, so one can write

netj =

n∑
i=0

wjixi

To determine the output of a perceptron, a so-called transfer function ϕ(netj)
is used. Popular choices are the linear transfer function

id(x) = x

and the sigmoid function

sig(x) =
1

1 + e−x

The output of a perceptron can be expressed like this:

oj = ϕ(netj) = ϕ

(
n∑
i=0

wjixi

)

Depending on the transfer function ϕ, the output of a perceptron may be linear
(e.g. when using the linear transfer function id(x) = x) or nonlinear (e.g. when
using the sigmoid function).

In order to train a perceptron (i.e. determining the weights wij), an error
function is needed. It quanti�es the output error and will be minimized during
training. The most commonly used error function in this context is de�ned as

E( #�w) =
1

2

∑
d∈D

(td − od)2

where #�w is the weight vector of the perceptron, D is the training set and td and
od are the desired and the real output for a training example d.
Minimizing this error function is done by gradient descent, i.e. by using the
gradient

∇E( #�w) =

[
δE

δwj0
, . . . ,

δE

δwjn

]
The weight update ∆wji for each weight is determined by

∆wji = −η
δE

δwji

η is the so-called learning rate and determines the step size for the weight update,
a negative sign is used to move the weights into the direction that decreases E.



δE
δwji

can be calculated by simply di�erentiating E( #�w), which for a linear transfer

function results in
δE

δwji
=
∑
d∈D

(td − od)(−xid)

where xid is the value of input xi for training example d.
Note that in order to compute the gradient, the transfer function must be dif-
ferentiable. This requirement is ful�lled for both the linear transfer function and
the sigmoid function.
The weights will updated according to the following rule:

wji ← wji +∆wji

These weight updates will be computed in an iterative manner until a minimum
of the error function is reached.

Gradient descent basically minimizes the error function by following its gra-
dient (i.e. its �derivation�) into a minimum. It can be shown that for a single
perceptron, the error function always has only one minimum, hence gradient
descent is guaranteed to always �nd a global minimum (as there are no local
minima). Note that the learning rate η has a signi�cant in�uence on the speed
of convergence. In some cases, when η is chosen too large, gradient descent might
not converge and end up oscillating around the minimum of E.

Fig. 4.2.2. An exemplary three-layer MLP with one single layer.

As a single perceptron is not very powerful � it can only model linearly sepa-
rable classes, which e.g. is not su�cient for solving the XOR problem. Therefore,
in practice a network of such perceptrons is used, with the perceptrons being
devided into multiple layers � hence the name �Multi Layer Perceptron�. See
Figure 4.2.2 for an illustration.



There are three types of layers:

� Input Layer: First layer in the network, represents the input vector; consists
of the input vector values, not of perceptrons.

� Hidden Layer: Layer somewhere between the �rst and the last layer of the
network.

� Output Layer: Last layer in the network, the output of this layer is the
overall output of the network.

Each perceptron in layer k will receive the output of each perceptron in layer
k− 1 as input and its output will be forwarded to all perceptrons in layer k+1.
That is, the xi of the perceptrons are actually the oi of the perceptrons in the
preceding layer. There are no other links in the network than the ones described
which implies that the network is acyclic. This is the reason why networks of
this type are called feed-forward networks.

According to Khashei & Bijari [14], MLPs are the most commonly used neural
networks in time series prediction. For most applications in this area, only one
hidden layer is used and the output layer contains only one perceptron. For such
three-layer MLPs with a single output perceptron j one can write its output as

oMLP = ϕout

(
Q∑
i=0

wij · ϕhidden

(
P∑
h=0

whixi

))
with P being the number of inputs and Q being the number of perceptrons
in the hidden layer. In most cases, the sigmoid function is used in the hidden
layer (therefore ϕhidden = sig), whereas for the output layer, a linear transfer
function is used (therefore ϕout = id). It can be easily seen that under these
circumstances, due to the use of the sigmoid function, the output of the MLP is
nonlinear.

Due to its increased complexity compared to a single perceptron, training an
MLP is more complicated and computationally more expensive than training a
single perceptron: because of the larger number of weights the hypothesis space
(i.e. the space of possible weight combinations) is much larger.
The algorithm most commonly used for training MLPs is called backpropaga-
tion and can be thought of as a variant of gradient descent. The basic idea of
backpropagation is that the error measured at the output layer is propagated
backwards through all previous layers in order to update the network's weights
(i.e. the weights of all perceptrons in the MLP). In the following only the big
picture of backpropagation will be given.
Let δj be the error term associated with perceptron j. This error term will be
used to compute the weight update:

∆wji = η · δj · xi
For the output layer neurons, the error term is calculated as

δj = ϕ′(oj) · (tj − oj)



where ϕ′ denotes the �rst derivation of ϕ. In this case, the weight updates are
basically computed in the same way as for a single perceptron.
However, for hidden layer neurons, the error term is determined as

δj = ϕ′(oj) ·
∑

k∈layerm+1

wjkδk

where m denotes the layer of perceptron j. Hence, the sum is aggregated over all
perceptrons in the subsequent MLP layer, i.e. all perceptrons that receive oj as
an input. This means, that the update depends on the weighted sum of all error
terms of subsequent perceptrons. This can be intuitively understood as the error
being propagated backward through the network of perceptrons. Mitchell [21]
explains in greater detail the mathematical foundations of this algorithm and
why it is guaranteed to converge.

As the backpropagation algorithm seems to be biologically not plausible,
Aitkenhead et al. [1] propose an alternative way of training neural networks.
Their �Local Interaction Method� refrains from propagating the global error
from the output layer back through the complete network. Instead, the weight
updates are determined only based on local criteria, i.e. only depending on a
perceptron's immediate neighborhood. They show in two small experiments,
that their approach can perform better than the traditional backpropagation
approach. However, backpropagation is still the most widely applied training
algorithm for MLPs and can be thought of as an accepted standard.

MLPs are a very �exible machine learning technique because they do not
make any assumptions about the function to be approximated. However, this
adaptability does not come without any cost:
First of all, the overall network structure (the number of layers to use and the
number of perceptrons in each of these layers) usually must be determined before
training the network via backpropagation. Although there exist some approaches
to automatically determine these parameters (e.g. the use of genetic algorithms
as in the work of Flores et al. [10]), in practice this is mostly done by expert
judgement or trial and error.
Moreover, it is often necessary to train the network for a long time until good
performance is reached. However, if a network is trained too long or if it contains
too many perceptrons, it will start to over�t the data. This means, that there
will be a very low error rate on the training data, but large errors for previously
unseen data, i.e. the network does not generalize. Over�tting is a well known
issue in machine learning and there exist techniques to deal with it (Mitchell [21]
suggests e.g. the use of validation sets in addition to training and test sets).
Another problem is the existence of local minima: because backpropagation can
be viewed as variant of gradient descent, it will �nd a minimum, but the error
surface of an MLP usually contains multiple local minima. Both the learning
rate η and the initial values of the weights can in�uence whether the algorithm
will �nd a local or a global minimum. There are also some advanced techniques
to prevent backpropagation to get stuck in local minima in order to �nd a global



minimum (e.g. adding a momentum term to the weight update). In most real-
world applications, however, local minima are not a big concern.

ANNs in general and therefore also MLPs were not explicitly created to
model, analyze or predict time series. In fact, the original intentions of use were
classi�cation and function approximation.
However, time series prediction can be seen as a special case of the more gen-
eral function approximation problem. Therefore, the MLP can be trained to
approximate the function

f(Yt, · · · , Yt−l) := Yt+1

This can be done by creating a training set from the time series data:

(x1, . . . , xn) := (Yt, . . . , Yt−l) and

tnet := Yt+1

Here, tnet denotes the desired output of the network.
Moreover, since ANNs do not make any assumptions about the input data or
about the function to approximate, one can simply add additional variables as
input to make the prediction multivariate.

There are, of course, also other types of ANNs that can be used for time
series prediction. So-called Time Delayed Neural Networks (TDNNs) are capa-
ble of recognizing input patterns independent of their position in time and were
originally used for phoneme recognition [30]. They are interesting in the context
of time series analysis because of their ability to robustly handle inputs shifted
in time. This property is called time invariance.
The class of Recurrent Neural Networks (the counterpart of feed forward net-
works) describes neural networks that have feedback connections, e.g. the output
of a neuron being fed back as one of its inputs for the next time step. Due to this
property, RNNs are capable of maintaining some inner state through time. This
can be very valuable when dealing with time-dependent data like time series.
Kim and Shin [15] present the application of both TDNNs and RNNs to time
series prediction. Although these types of ANNs might be better suited for deal-
ing with time series, the MLP can still be considered to be the �standard ANN�
in time series prediction. Many papers in this area even use the general term
ANN to refer to an MLP.

4.3 Pattern-Matching approaches

A group of nonlinear approaches di�erent from ANNs is based on pattern match-
ing on sequences of labels. Figure 4.3.1 illustrates the general architecture of
these approaches: In a �rst step, the input is transformed from a sequence of
real values Yt, . . . , Yt−l into a sequence of labels Lt, . . . , Lt−l. Then, this sequence
of labels is matched to the knowledge base (consisting of other label-sequences



Fig. 4.3.1. Overview over the general architecture of pattern-matching approaches.

or consisting of a set of rules) in order to map it to one or more output labels

L̂
(1)
t+1, . . . , L̂

(n)
t+1. These output labels are then in a third step converted back into

a real-valued prediction Ŷt+1.

Martinez et al. [19] use an approach called �Pattern Sequence-based Fore-
casting� on an energy consumption data set. This data set contains the energy
consumption per hour. In a �rst step, they divide their data set into days and
cluster these days based on their energy consumption curve using the k-means
algorithm. For each day, the according cluster ID is stored as label.
When predicting the energy consumption curve for the next 24 hours, the se-
quence of the last l labels is taken into account. The history of label sequences
is searched for the current sequence and for each match, the day immediately
following this match is recorded. The prediction is then generated by averaging
over the energy consumption rate of these days. If the sequence of the last l
labels has never occurred in the history, the sequence of the last l − 1 days is
used and so on, until a match is found. Note that only exact matches are taken
into account.

Also approaches using fuzzy sets �t into the category of pattern-matching
approaches. Song & Chissom [25, 26] propose so-called fuzzy time series in this
context. The training data input (consisting of real numbers) is �rst mapped to
fuzzy sets, then fuzzy relationships between sequences of fuzzy sets are learned.
These relationships have the form of "IF ... THEN ..." rules which are much
easier to interpret by a human than e.g. the weights of an MLP.
In the forecasting step, the input sequence is mapped to a sequence of fuzzy set
memberships. The learned fuzzy rules are applied and the result (also expressed
with fuzzy set memberships) is �defuzzi�ed� into a real-valued prediction. This
�defuzzi�cation� can be done e.g. by computing a weighted sum of the set means



with the set memberships being used as weights. Due to the inherent fuzziness
of this whole process, there is no exact matching required. Hence, this approach
seems to be more �exible than the one of Martinez et al.
Li et al. [16] apply the idea of fuzzy time series to the prediction of electricity
prices. However, in general this approach is not yet used widely in practice.

5 Combination of Methods

5.1 General Idea

Virtually every individual forecasting method has its advantages, but also its
limitations. Although the combination of di�erent methods does not necessarily
lead to better performance, it reduces the risk of using a completely inappropri-
ate method and therefore the risk of total failure [12,14].

Khashei & Bijari [14] distinguish hybrid architectures in two dimensions:
They are either homogeneous (e.g. a set of di�erently con�gured MLPs) or het-
erogeneous (e.g. a combination of an ARIMA and a MLP). Moreover, one can
distinguish competitive and cooperative architectures: in a competitive archi-
tecture, the �best� method will alone determine the output. In a cooperative
architecture, the overall prediction is computed by combining the individual
methods' forecasts. Mostly, the di�erent methods model di�erent aspects of the
time series and are used sequentially.

In the following, two approaches towards hybrid architectures are presented
in more detail.

5.2 Cooperative Combination of ARIMA and MLP

As described in Sections 3 and 4, ARIMA is a linear method, whereas MLP is a
nonlinear method. Although they are quite di�erent in nature, Zhang [33] also
notes some similarities, e.g. both methods include a rich variety of models, need
a large training set and are prone to over�tting.

Both Zhang [33] and Khashei & Bijari [14] use a cooperative approach of
combining the ARIMA and MLP methods by dividing the time series Yt into a
linear part Lt (modeled by the ARIMA) and a nonlinear part Nt (modeled by
the MLP). Both only consider univariate one-step ahead forecasts.

Zhang [33] assumes that the linear and the nonlinear components are addi-
tive, therefore

Yt = Lt +Nt

His hybrid architecture (see Figure 5.2.1) is constructed as follows:
First, the ARIMA is used to �t the linear component Lt yielding predictions

L̂t+1 = Yt+1 + et+1



Fig. 5.2.1. Visualization of Zhang's [33] hybrid model for time series prediction which
uses an additive combination of ARIMA and MLP predictions.

of the linear component. The residuals et+1 only contain nonlinear relationships,
which are modeled using an MLP with a single hidden layer, such that

et+1 = f(et−1, ..., et−l) + εt+1

with f being the function realized by the MLP and εt+1 being the remaining
error term. The forecast of the MLP is called N̂t+1. The overall forecast of the
model is determined by adding the two components:

Ŷt+1 = L̂t+1 + N̂t+1

As Zhang showed by carrying out an experiment with three di�erent data sets,
this hybrid approach was able to outperform both individual ARIMA and ANN
models.

Khashei & Bijari [14], however, argue that one can not safely assume the
additive decomposition of a time series into a linear and a nonlinear part. Their
approach is depicted in Figure 5.2.2. They describe the time series as general
function of a linear and a nonlinear component:

Yt = f(Lt, Nt)

Again, an ARIMA is used to �t the linear component. The nonlinear component

is split into two subcomponents N
(1)
t (based on the residuals) and N

(2)
t (based

on the wj used in the ARIMA model) which are both approximated by an MLP:

N̂
(1)
t+1 = f (1)(et, . . . , et−n) and

N̂
(2)
t+1 = f (2)(wt, . . . , wt−m)

with f (1), f (2) being the nonlinear functions represented by the respective MLP.
The overall prediction can then be represented as

Ŷt+1 = f(N̂
(1)
t+1, L̂t+1, N̂

(2)
t+1)



Fig. 5.2.2. Visualization of the hybrid model by Khashei & Bijari [14] which uses
multiple MLPs in combination with an ARIMA model for time series prediction.

with f being the overall function represented by the resulting MLP.
Although three di�erent MLPs are used, they can easily be combined into a
single MLP receiving inputs et, . . . , et−n, wt, . . . , wt−m, L̂t+1.
When comparing the performance of their hybrid method to individual ANN and
ARIMA models and to the hybrid method of Zhang, they arrived at the following
results: The individual ANN tended to be slightly better than the individual
ARIMA. Moreover, both hybrid methods outperformed the individual methods.
These two results support the ones of Zhang mentioned aboved. Khashei & Bijari
also found that their model yielded higher performance than Zhang's model.
They conclude that their approach of combining linear and nonlinear forecast
with an arbitrary function is more appropriate than Zhang's approach of simply
adding them up.

5.3 Ensemble-based approaches

Another approach of combining di�erent methods is based on so-called ensem-
bles. An ensemble is a group of individual forecasting methods that use the same
functional approach but di�erent models (i.e. di�erent parameter sets). The key
idea is that the methods within an ensemble should be diverse in order to get the
most performance gain. This model diversi�cation can be reached by training
the models di�erently.
Ruta et al. [23] suggest the use of di�erent subsets of the training data, di�erent
features, di�erent noise levels and a di�erent initialization of the model param-
eters. They also list di�erent approaches to combine the individual forecasts,



e.g. weighted average with weights determined by the prior accuracy of the in-
dividual forecasting models. For their practical evaluation, they use a two-stage
approach with k groups: within each group, a single best predictor is selected
(�winner takes it all�) and then in a second step, the forecasts of the groups are
combined by computing a simple average.
The work of Ruta et al. does not only cover ensembles, but proposes a complete
architecture for time series prediction which cannot be treated in more detail
here.

The approach of Martínez-Rego et al. [20] also makes use of ensembles, al-
though in a somewhat di�erent setting. For their �Distributed Commitees of
Local Experts�, they use clustering algorithms to create clusters in the input
space. Each cluster is represented by one representative data point, called a
cluster node. Then, for each cluster, a MLP is trained on the data belonging
to this cluster and on the data belonging to neighboring clusters. After this,
ensembles (called �committees� in their paper) are created: For each cluster, the
corresponding ensemble contains all predictors that have been trained on the
data points belonging to this cluster. That means, the ensemble of a cluster con-
tains the MLP of that cluster itself and the MLPs of the neighboring clusters.
In the prediction step, the input is mapped to a cluster by picking the cluster
node being closest to the input in the input space. The ensemble of this clus-
ter will then determine the overall prediction. Martínez-Rego et al. use another
MLP for the combination of the predictions made by the predictors within the
ensemble. They call this a trainable fusion-rule in contrast to �xed fusion-rules
like the average operation used by Ruta et al.

The approach taken by Silipo and Winters [24] can also be seen as a ensemble-
based approach in the wider sense as it is also based on cluster-wise prediction.
They predict the total electricity usage of about 6000 private and commercial
consumers by �rst clustering them, then �tting a model for each of the clusters,
and �nally, calculating the overall prediction by summing up the individual
predictions for all clusters.

6 Predictive Intervals

6.1 General Idea

Every prediction about the future necessarily contains come uncertainty. This
uncertainty can have di�erent sources [13]:

� Input Uncertainty: Errors in measuring and sampling the data.
� Parametric Uncertainty: Inability to identify the best parameter set when
�tting the model.

� Model Structure Uncertainty: Information loss due to the conversion of
real world problems into abstract mathematical formulas.



Of course, also the random component R of the time series (mentioned in Sec-
tion 2) contributes to the overall uncertainty.

For multi-step ahead predictions the uncertainty is in general larger than
for one-step ahead predictions: the larger the lead time, the greater the uncer-
tainty [5]. Therefore, the forecasting accuracy will decrease with increasing lead
time [31]. There are di�erent reasons for this e�ect:
Li et al. [17] point out that historical data used for training the forecasting mod-
els are often incomplete, noisy and ambiguous and do not necessarily contain
the necessary patterns for long-term forecasts.
As Sovilj et al. [29] add, long term prediction requires a long history of observa-
tions for training purposes. This results in the widely known �curse of dimension-
ality�, which states that the amount of training data needed grows exponentially
with the number of input dimensions being analyzed. In this context, the num-
ber of input dimensions corresponds to the length of the observation history.
Moreover, for multivariate time series, the prediction Ŷt+k might depend on some

X
(i)
t+j (1 ≤ j ≤ k). This introduces the additional uncertainty attached to fore-

casting X̂
(i)
t+j [23].

Another reason for this increased uncertainty is based on the approach used for
making multi-step ahead predictions. In general, one can distinguish two ap-
proaches to multi-step ahead prediction [17,23,27]:
On the one hand, there is the recursive approach: the one-step ahead prediction
is recursively applied with predictions Ŷt+1, ...Ŷt+k−1 being fed back into the
prediction method:

Ŷt+1 = f(Yt, Yt−1, . . . , Yt−l)

Ŷt+2 = f(Ŷt+1, Yt, . . . , Yt−l+1)

...

This approach is very straightforward to implement, but has one major dis-
advantage: feeding back the predictions as inputs leads to an accumulation of
prediction errors and therefore decreases the prediction accuracy [27,28].
On the other hand, there is the direct approach, where k di�erent models are
trained for a k-step ahead prediction:

Ŷt+1 = f1(Yt, Yt−1, . . . , Yt−l)

Ŷt+2 = f2(Yt, Yt−1, . . . , Yt−l)

...

This approach is computationally more expensive (because multiple models need
to be �t), but does not su�er from accumulated errors like the recursive approach.
However, there is still some problem with this approach: the autocorrelation of
the time series for large lag values will probably be rather low, which means that
historical data is not suitable for explaining data points far in the future.



By combining both approaches into the DirRec approach, Sorjamaa & Lendasse
[28] try to overcome the weaknesses of the single approaches.

Most forecasting methods do not explicitly take into account the uncertainty
attached to their forecast. They usually output exactly one value: their forecast
for the future value of the time series. However, this gives no information about
the con�dence with which this forecast is made. To better assess this prediction
con�dence, so-called predictive intervals (or prediction intervals) can be used.
A predictive interval is an interval that will contain the true value of Yt+k with
a speci�ed probability p (most commonly p = 0.95). Therefore, the output of
a forecasting method using predictive intervals is no longer a single value Ŷt+k,
but rather an interval Γt+k = [LOW t+k, HIGHt+k]. De Gooijer & Hyndman [8]
argue that the term prediction interval should be used for predictions, whereas
the term con�dence interval should be reserved for model parameters to avoid
confusion.

For evaluating predictive intervals, two measures are usually used, which are
both computed on the test data set [13]: the probability of coverage POC which
represents the percentage of test data points lying in the predictive interval, and
the average width AW of the predictive interval. The general goal is to maxi-
mize POC while minimizing AW . As Dashevskiy & Luo [6] point out, a narrow
AW indicates an e�cient prediction interval, whereas a large POC close to the
desired value of p indicates that the prediction interval is valid.

If some sort of Bayesian method is used, calculating a predictive interval
is relatively straightforward as probabilities and distributions are already used
throughout the method. The more interesting questions is how to determine pre-
dictive intervals for other methods which usually would only make a single-point
forecast.
Chat�eld [4] provides a thorough introduction into the mathematical problem of
constructing prediction intervals and gives an overview of di�erent approaches
and common pitfalls. Here, we will focus on two simple techniques to construct
approximations of predictive intervals: ensembles and conformal predictors. Al-
though they might be mathematically inappropriate, they are are fairly easy to
implement and in practice yield satisfactory results.

6.2 Ensembles

The general idea of ensembles has already been introduced in Section 5. Ensem-
bles not only can be used for achieving a more robust prediction accuracy, but
they also can be used to estimate predictive intervals. This can be achieved by
calculating mean and variance of the predictions made by the ensemble mem-
bers.
Kasiviswanathan et al. [13] used this approach to approximate predictive inter-
vals for rainfall runo� data: in their experiment, they trained an MLP on the
available data, and then created an ensemble by making copies of the trained



MLP. For each of these copies, they perturbed some randomly selected weights
to diversify the ensemble.
The overall prediction of the ensemble was computed as simple arithmetic mean
and the variance of the predictions made by the individual MLPs was used to
compute the width of the predictive interval. For multi-step ahead forecasts,
the direct approach was used. Figure 6.2.1 shows an illustration of their results,
where the red bands indicate the predictive interval and the black dots denote
the observed values. It nicely illustrates that for larger lead times the uncertainty
tends to grow larger. This can be seen by the tendency that the predictive in-
tervals grow larger and contain less of the observed data points as the lead time
increases.

6.3 Conformal Predictors

Conformal predictors are a general approach of approximating a con�dence in-
terval. They can be used on top of virtually any classi�cation or prediction
algorithm (called the underlying algorithm). Dashevskiy & Luo [6,7] provide an
introduction into conformal predictors in general and their application to time
series prediction. This section is largely based on their work.

Conformal predictors are a machine learning technique that makes predic-
tions based on how well a new example will �t into the set of known training
examples. A so-called nonconformity measure α is used to represent the dissim-
ilarity between examples. Each example zi consists of an object xi and a label
yi, therefore

zi = (xi, yi)

The p-value for a new example zn = (xn, y) is de�ned as:

p(y) =
#{i = 1, . . . , n : αi(y) ≥ αn(y)}

n
(3)

where αi(y) denotes the nonconformity score of object xi if the value y is assigned
to the new object xn.
A large value of p(y) indicates that the new example xn with label y is very
typical for the training set. This is because equation (3) computes the fraction
of elements in the training set that have a greater dissimilarity to the training
set than the new example. If this fraction is large, obviously the new example
�ts in very well. Therefore, the general goal is to �nd the label y with the largest
p-value. Assuming that the order of the examples is irrelevant, it is even possible
to prove that for any given error probability ε one can construct a prediction
interval that will contain the actual observation with a probability of 1− ε:

Γ = {y : p(y) ≥ ε} (4)



Fig. 6.2.1. Diagram by Kasiviswanathan et al. [13], showing the resulting predictive
intervals for di�erent examples and di�erent lead times.



Due to the use of labels, conformal predictors are rather a classi�er approach
than a regression approach. However, it is possible to de�ne the zi in a way that
conformal predictors can be also used for time series prediction:

zi = (xi, yi) := ((Yt−l, . . . , Yt), Yt+1)

Let Ŷt+1 be the prediction of the underlying algorithm. Let the error measure
for the new object be de�ned as

αn = |Ŷt+1 − Yt+1|

Then, for an error probability ε, construct the predictive interval as

Γt+1 =
[
Ŷt+1 − rmax, Ŷt+1 + rmax

]
(5)

with some rmax. The true value Yt+1 lies in this interval if and only if:

αn = |Ŷt+1 − Yt+1| ≤ rmax (6)

Therefore, rmax gives an upper bound on αn. For given error probability ε,
equation (4) shall hold true. With equations (5) and (6), rmax can then be
calculated like this:

rmax = maxr∈R

{
#{i = 1, . . . , n : αi(y) ≥ r}

n
≥ ε
}

By computing rmax in this way, the predictive interval Γt+1 can be calculated
based on the prediction Ŷt+1 of the underlying algorithm.
The assumption of the order of examples being irrelevant clearly does not hold for
time series data, therefore no provable guarantees about the predictive interval
can be made anymore. Despite this theoretical lack of valididy, Dashevskiy & Luo
report good practical results for applying conformal predictors to time series.

Papadopoulos & Haralambous [22] propose a variant of conformal prediction
they call �Inductive Conformal Prediction�. It yields improved performance when
used with ANNs as underlying algorithm. Figure 6.3.1 shows their results for a
sunspot activity data set.

7 Conclusion

This paper gave an introduction into the topic of time series prediction which is
a relevant problem in many application areas.

Due to space limitations, this paper can only serve as a brief overview over
the topic of time series prediction. With ARIMA and MLP, the two most pop-
ular methods were introduced, but there are many other approaches that could
not be discussed in this paper, e.g. support vector machines (SVMs) or classi�-
cation and regression trees (CARTs). De Gooijer & Hyndman [8] provide a very
thorough overview over a variety of approaches.



Fig. 6.3.1. Results from the paper of Papadopoulos & Haralambous [22], showing the
predictive intervals for two di�erent sunspot activity time series.

In recent years, the use of MLPs has become more and more popular in the
�eld of time series prediction. But although there are other neural networks like
TDNNs and RNNs that might be better suited to deal with time series data,
they are not yet widely applied in practice.

All predictive methods are based on the assumption that the future is some-
how correlated to the past. While this may be true most of the time, there are
unforeseeable events like natural disasters, which in general cannot be predicted
and therefore cannot be taken into account. It is not quite clear how this limi-
tation can be overcome. Change point analysis [9] tries to detect points in the
time series when the underlying process changes (i.e. another model needs to be
used) and might be one possible approach to overcome this limitation.

Although most prediction methods work quite well in practice, there is cur-
rently no approach that performs equally well for all kinds of input data. As
every approach has its individual strengths and weaknesses, the combination of
di�erent approaches and the use of predictive intervals instead of single-point
forecasts seem to be reasonable steps towards better forecasts. There is still a lot
of work to be done until the problem of time series prediction can be considered
to be solved.

The original intention of this paper was to analyze the application of time
series prediction to activity recognition on mobile devices. However, it turned
out that there seems to be no research on the question how time series prediction
can be used in this context. Therefore, this seems to be a worthwhile research
direction for future work.
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