

Measuring Relations between Concepts in Conceptual Spaces

Lucas Bechberger and Kai-Uwe Kühnberger

https://www.lucas-bechberger.de

The Different Layers of Representation

OSNABRÜCK

OSNABRÜCK Formalizing Star-Shaped Concepts

UNIVERSITÄT

OSNABRÜCK Formalizing Star-Shaped Concepts

UNIVERSITÄT

OSNABRÜCK Formalizing Star-Shaped Concepts

- We can already create new concepts from old ones
 - Intersection (green ∩ banana = green banana)
 - Unification (citrus fruit = orange ∪ lemon ∪ grapefruit ∪ ...)
 - Projection onto a subspace (apple↓(size) = apple's typical size)
- We also want to talk about relations between concepts
 - Compare their sizes (|apple| < |fruit|)
 - Subsethood (apple ⊂ fruit ↔ apple is-a fruit)
 - Implication (apple \rightarrow red)
 - (Similarity & Betweenness)

Measuring the Size of a Concept

OSNABRÜCK

- Size of an α-cut:
 - Original cuboid + Left/right part + Top/bottom part + Corners
 - 2D ellipse + 1D ellipse * height + 1D ellipse * width

+ 0D ellipse * width * height

- Integrate over α-cuts to get overall size of cuboid
- Use inclusion-exclusion principle on cuboids

B

Α

Degree of Subsethood & Implication

AT OSNABRÜCK Research Contributions

- Formalized ways of measuring relations between concepts
 - Size
 - Subsethood
 - Implication
- All of this has been implemented: https://github.com/lbechberger/ConceptualSpaces
- Future work: use this formalization in practice

Thank you for your attention!

Questions? Comments? Discussions?

https://www.lucas-bechberger.de

*a*LucasBechberger