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Learning Dimensions

 There are (at least) three approaches:
 Handcrafting
 Multidimensional Scaling
 Artificial Neural Networks

 Bonus: A Hybrid Approach
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Learning Dimensions: MDS

Psychological grounding

Dealing with unseen inputs

1) Psychological experiment

2) Average across participants

3) Multidimensional Scaling
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Learning Dimensions: ANNs

 Autoencoder (e.g., β-VAE): compress and reconstruct input

 Hidden neurons = dimensions in our conceptual space

output

hidden representation

input24 75 02 53

42 91

22 76 03 50

Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S. & Lerchner, A. β-VAE: Learning 
Basic Visual Concepts with a Constrained Variational Framework, ICLR 2017

Dealing with unseen inputs

Psychological grounding
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Learning Dimensions: ANNs

 Centered, unrotated rectangles
 Differing only with respect to width and height

 Use InfoGAN to learn interpretable dimensions

Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I. & Abbeel, P. InfoGAN: Interpretable Representation Learning by 
Information Maximizing Generative Adversarial Nets Advances in Neural Information Processing Systems, 2016
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Learning Dimensions: Hybrid

Psychological 
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Psychological grounding

Dealing with unseen inputs

Bechberger, L. & Kypridemou, E. Mapping Images to Psychological Similarity Spaces Using Neural Networks. AIC 2018
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Learning Concepts

Machine Learning 
Engineer

Cognitive Science
Researcher

Give me a big data set of labeled examples! 

I’ll train a neural network
for a bunch of epochs

to find a nice
decision boundary.

It’s just a standard 
ML problem!

Wait a second, that’s 
cognitively implausible!

In real life,
we have more
unlabeled than

labeled
examples.

Plus:
Humans 

don’t learn
via batch

processing.

That’s too complicated for now.
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Learning Concepts: LTN

 Fuzzy Logic
 Degree of membership between 0 and 1

 One can generalize logical operators:
 apple AND red = min(apple, red)

 We can express rules over these fuzzy sets

apple:    1.0
red:    0.9
round:    0.7
banana:   0.0

Symbolic

Subsymbolic

Conceptual
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Learning Concepts: LTN

 Use neural networks to 
learn membership 
functions

 Constraints:
 Labels
 Rules

 Tune NN weights such that 
all constraints are fulfilled

apple red sweet

0.99 0.75 0.31

Apple AND red IMPLIES sweet: 0.31
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Learning Concepts: LTN

 Conceptual space of movies from Derrac and Schockaert
 Extracted conceptual space from movie reviews
 15.000 data points, labeled with one or more of 23 genres

 Use LTN to learn genres in that space
 Compare to kNN with respect to classification performance
 Compare to simple counting with respect to rule extraction

 Long run: align LTN with conceptual spaces theory
 Convexity, domain structure, ...

Joaquín Derrac and Steven Schockaert. Inducing semantic relations from conceptual spaces: a data-driven approach 
to commonsense reasoning, Artificial Intelligence, vol. 228, pages 66-94, 2015
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Thank you for your attention!

Questions? Comments? Discussions?

https://www.lucas-bechberger.de

@LucasBechberger


