

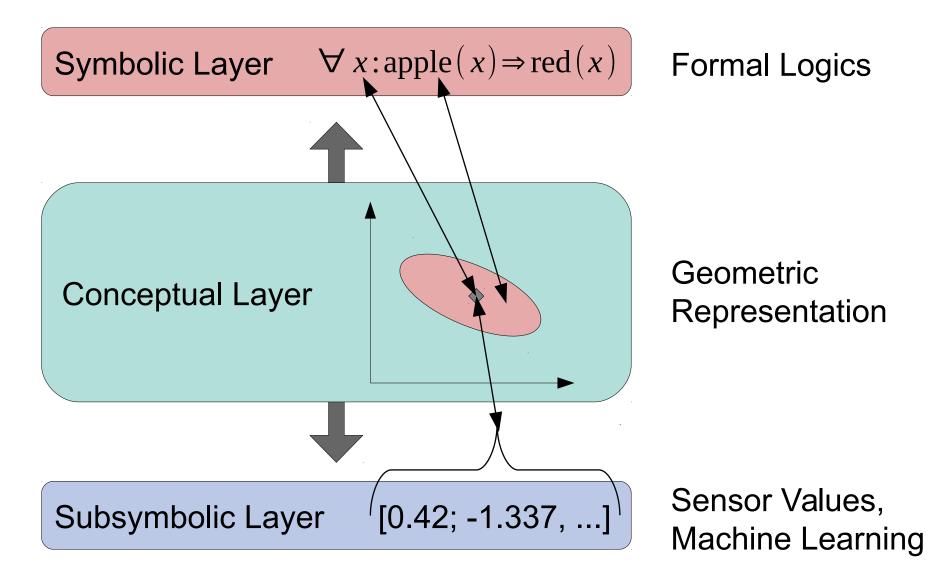
Machine Learning in Conceptual Spaces

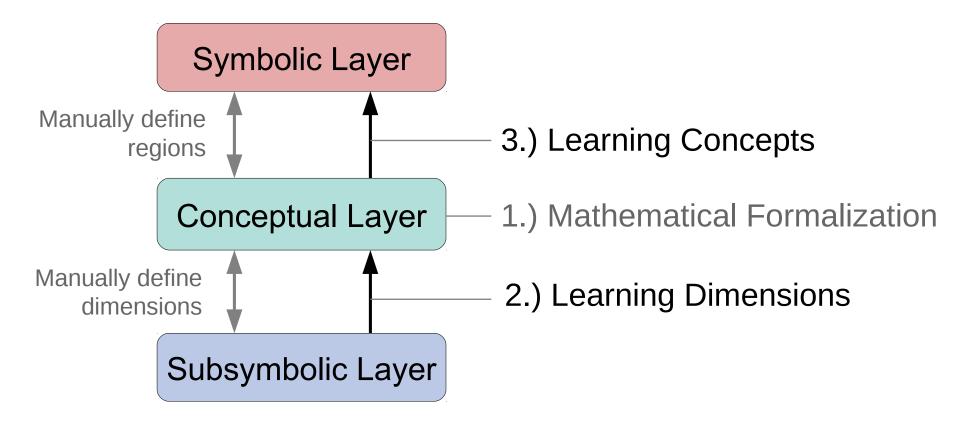
Two Learning Processes

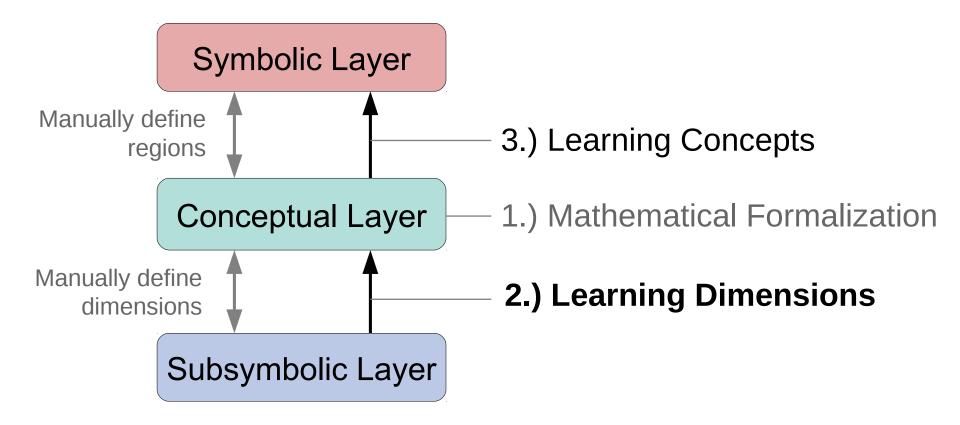
Lucas Bechberger

https://www.lucas-bechberger.de

OSNABRÜCK Conceptual Spaces



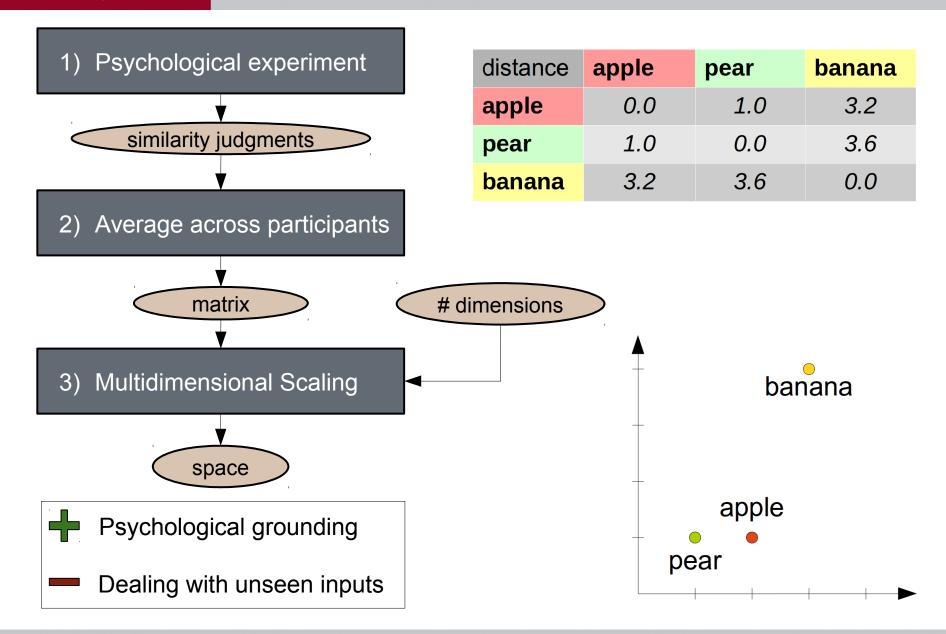




- There are (at least) three approaches:
 - Handcrafting
 - Multidimensional Scaling
 - Artificial Neural Networks
- Bonus: A Hybrid Approach

- There are (at least) three approaches:
 - Handcrafting
 - Multidimensional Scaling
 - Artificial Neural Networks
- Bonus: A Hybrid Approach

Learning Dimensions: MDS

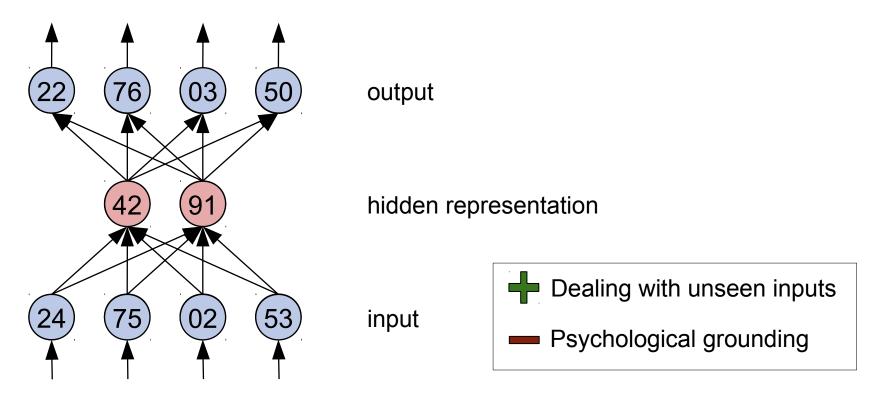


Machine Learning in Conceptual Spaces / Lucas Bechberger

OSNABRÜCK

- There are (at least) three approaches:
 - Handcrafting
 - Multidimensional Scaling
 - Artificial Neural Networks
- Bonus: A Hybrid Approach

Autoencoder (e.g., β-VAE): compress and reconstruct input



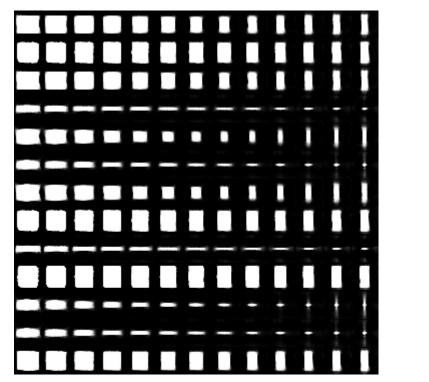
Hidden neurons = dimensions in our conceptual space

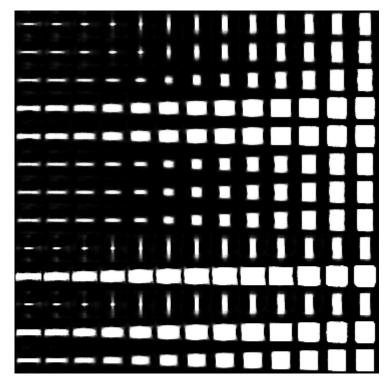
Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S. & Lerchner, A. β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, ICLR 2017

Centered, unrotated rectangles

UNIVERSITÄT

- Differing only with respect to width and height
- Use InfoGAN to learn interpretable dimensions





Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I. & Abbeel, P. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets Advances in Neural Information Processing Systems, 2016

Machine Learning in Conceptual Spaces / Lucas Bechberger

- There are (at least) three approaches:
 - Handcrafting
 - Multidimensional Scaling
 - Artificial Neural Networks

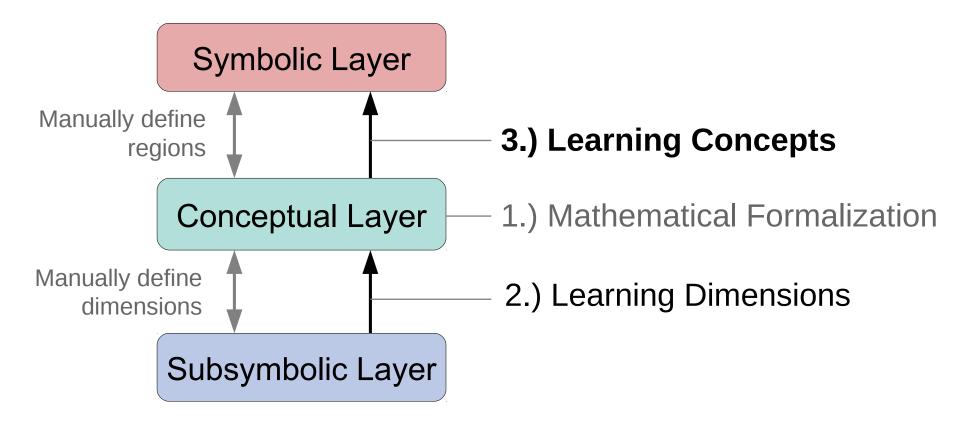
Bonus: A Hybrid Approach

OSNABRÜCK Learning Dimensions: Hybrid

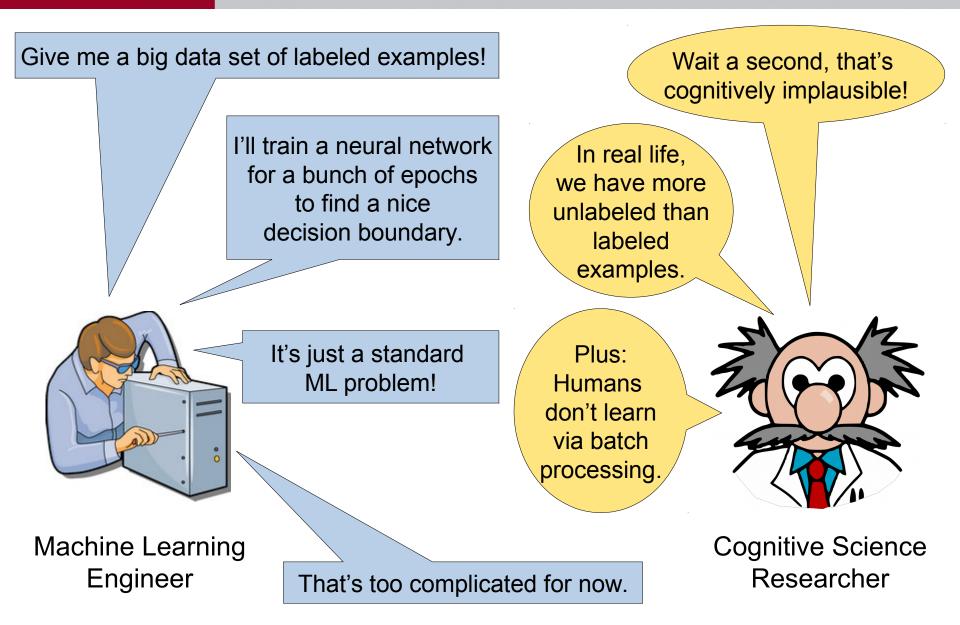


Bechberger, L. & Kypridemou, E. Mapping Images to Psychological Similarity Spaces Using Neural Networks. AIC 2018

Machine Learning in Conceptual Spaces / Lucas Bechberger



Learning Concepts



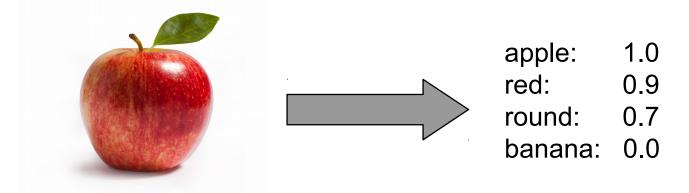
OSNABRÜCK

OSNABRÜCK Learning Concepts: LTN

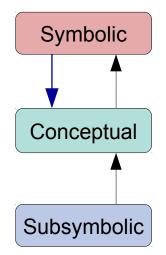
Fuzzy Logic

UNIVERSITÄT

Degree of membership between 0 and 1



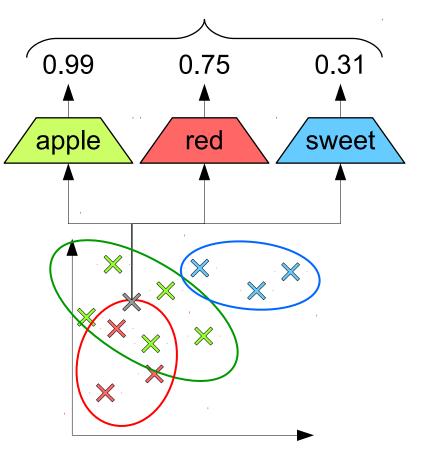
- One can generalize logical operators:
 - apple AND red = min(apple, red)
- We can express **rules** over these fuzzy sets



OSNABRÜCK Learning Concepts: LTN

- Use neural networks to learn membership functions
- Constraints:
 - Labels
 - Rules
- Tune NN weights such that all constraints are fulfilled

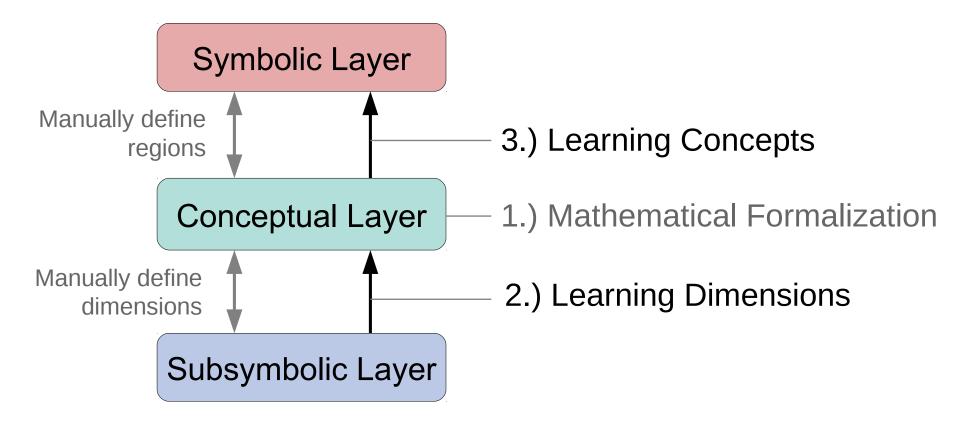
Apple AND red IMPLIES sweet: 0.31



OSNABRÜCK Learning Concepts: LTN

- Conceptual space of movies from Derrac and Schockaert
 - Extracted conceptual space from movie reviews
 - 15.000 data points, labeled with one or more of 23 genres
- Use LTN to learn genres in that space
 - Compare to kNN with respect to classification performance
 - Compare to simple counting with respect to rule extraction
- Long run: align LTN with conceptual spaces theory
 - Convexity, domain structure, ...

Joaquín Derrac and Steven Schockaert. Inducing semantic relations from conceptual spaces: a data-driven approach to commonsense reasoning, Artificial Intelligence, vol. 228, pages 66-94, 2015



Thank you for your attention!

Questions? Comments? Discussions?

https://www.lucas-bechberger.de

✓ @LucasBechberger