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What is it all about?

 If a computer has the following entry in its knowledge base:

 Does it know what „red“ means?
 Does it know what „apple“ means?

 Most likely not!
 For a computer „red“ is just an arbitrary symbol

 „Symbol grounding problem“ [Harnad1990]:
 How can abstract symbols contain any meaning?
 They need to be grounded in reality

∀ x :apple( x)⇒ red(x )

∀ x : klj8(x )⇒ 42x8e45(x )
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The different layers of representation

Symbolic Layer

Subsymbolic Layer     [0.42; -1.337]

∀ x :apple( x)⇒ red(x ) Formal Logics

Sensor Values,
Machine Learning

?Conceptual Layer
Geometric 
Representation
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Conceptual spaces in a nutshell 

 High-dimensional space  [Gärdenfors2000] 
 Dimensions represent measurable qualities
 Concepts are convex regions in this space

shape

color

red
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brown

cylindric round rectangular

apple

banana



Conceptual Spaces
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Dimensions & Domains

 Quality dimensions
 Different ways stimuli are judged to be similar or different
 E.g., temperature, weight, brightness, pitch

 Domain 
 Set of integral dimensions that are separable from all other 

dimensions
 Color: hue, saturation, and brightness

 Distance in this space is inversely related to similarity
 Integral dimensions → Euclidean distance (length of line segment)
 Separable dimensions → Manhattan distance (sum of distances)
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Euclidean vs Manhattan distance

Euclidean Distance Manhattan Distance

d
E

d
M

Euclidean Betweenness Manhattan Betweenness
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Example: the color domain

https://en.wikipedia.org/wiki/HSL_and_HSV#/media/File:HSL_color_solid_dblcone_chroma_gray.png
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Properties

 Look at one domain (e.g., color)
 Regions correspond to properties (e.g., red)
 Properties are mostly expressed by adjectives

 Criterion P:
 A natural property is a convex region of a domain in a conceptual 

space.
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Example: the color domain

https://en.wikipedia.org/wiki/HSL_and_HSV#/media/File:HSL_color_solid_dblcone_chroma_gray.png
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Connection to prototype theory

 Prototype theory of concepts
 Each concept is mentally represented by a prototype
 Prototype = abstract summary representation

 E.g., average instance

 Categorization: compare stimulus to all prototypes
 → best match wins

 Conceptual spaces
 Each concept is represented by a convex region
 Central point of this region can be interpreted as prototype
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Connection to prototype theory

 Voronoi tessellation
 Given a set of central points {p1, …, pn}

 Assign each point in the space to its closest pi

 Set of prototype points generates convex sets

https://commons.wikimedia.org/wiki/File:CentroidalVoronoiTessellation2.png
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Concepts

 Example: „apple“
 Color: red
 Shape: spherical
 Texture: smooth
 Taste: sweet

 Defined across multiple domains: combination of properties
 Different „importance“ to the concept (influenced by context)
 Potentially correlated

 Criterion C:
 A natural concept is represented as a set of convex regions in a 

number of domains together with an assignment of salience weights to 
the domains and information about how the regions in different 
domains are correlated.
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Conceptual Spaces

 Start with a set of dimensions

 Group them into domains

 Properties = convex regions within a single domain

 Concepts span multiple domains
 Salience values and correlation information



Applications 
of Conceptual Spaces

The Framework in Action
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Semantic grounding of word classes

 Adjectives refer to properties
 “red”, “tall”, “round”, “sweet” all refer to single domains

 Nouns refer to concepts
 “apple”, “dog”, “tree” are based on a combination of domains

 Verbs refer to actions
 “push”, “walk”, “bend” refer to the force domain

 Prepositions refer to the spatial domain
 “above”, “into”, “across” refer to positions and paths with respect to 

a landmark

[Gärdenfors2014]
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Concept combination

 “green banana”
 green is compatible with with banana’s color information
 Narrow down the color region
 Correlations between domains yield further updates: 

 Consistency is solid
 Taste is bitter

 “pink elephant”
 pink is incompatible with elephant’s color information
 Replace the color information

 “stone lion”
 stone is incompatible with most domains of lion (e.g. life span, habitat)
 Compatible domains: shape, size, and color
 Remove incompatible domains, keep compatible ones [Gärdenfors2000]
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Representing composite concepts

 Typically, objects consist of multiple parts
 Apple: seeds, stem, flesh, skin

 Idea: represent parts & their relations

[Fiorini2013]

http://www.blogoftheworld.com/free
bies/high-resolution-fruits-stock-

photos/

seeds stem flesh skin
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Anchoring in robotics

 Symbol system
 Symbols (“cup-22”)
 Predicates (“blue”)
 g: predicates → areas

 Sensor system
 Takes measurements at each 

time step
 h: measurements → points

 Anchor
 α: time → symbols x points
 Ties symbols to observations
 Needs to be updated [Chella2004]
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Plausible reasoning

 Interpolative reasoning
 Bachelor students are exempt from paying council tax in the UK
 PhD students are exempt from paying council tax in the UK
 What about Master students?

 Similarity and betweenness are important

 Derive conceptual space from textual data (word vectors)
 Find interpretable dimensions in this space
 Some example results:

 “wine shop” is between “gourmet shop” and “liquor store”
 Difference between “Jurassic Park” and “Kill Bill: Vol. 1”:

 “dinosaurs”, “the expedition”, “the scientist”

A B C

[Derrac2015]

B



Concept Formation in 
Conceptual Spaces

My PhD research
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What‘s missing?

 How can concepts be „discovered“?
 Theory tells us how to deal with a set of labeled data points...

color

apple

banana

red

yellow

brown

round
shape

cylindric rectangular
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What‘s missing?

 How can concepts be „discovered“?
 Theory tells us how to deal with a set of labeled data points...
 … but not how to deal with a stream of unlabeled data points!

color

apple

banana

red

yellow

brown

round
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cylindric rectangular
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My overall idea

Conceptual Space

Abstract Symbols

Deep Rep.
Learning

                

feature   vectors

Perception

extracted  concepts



Deep (Representation) 
Learning

A neurally inspired machine learning technique

[Bengio2014]
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Deep Representation Learning

 Inspired by biological neurons

 Error = computed output - expected output
 Backpropagation: Adjust weights based on error gradient
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https://commons.wikimedia.org/wiki/File:Logistic-curve.svg
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Deep Representation Learning

 Artificial Neural Network: combine many artificial neurons
 Autoencoder: compress and reconstruct input

 Hidden neurons = dimensions in our conceptual space

output

hidden representation

input24 75 02 53

42 91

22 76 03 50
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My overall idea

Conceptual Space

Abstract Symbols

Deep Rep. 
Learning

                

feature   vectors
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extracted  concepts



Fuzziness

The world is not black and white

[Zadeh1965]
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Fuzziness

 When is a person “tall”?
 1,80 m?
 1,79 m?
 1,78 m?
 …
 0,00 m?!

 Every threshold is somewhat arbitrary
 Also applies to other concepts (e.g., “red”)

 One solution: degrees of membership → fuzzy sets
 Imprecise boundaries

height

μ
tall

1 -

0
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My overall idea

Conceptual Space

Abstract Symbols

Deep Rep. 
Learning

                

feature   vectors

Perception

extracted  concepts

Clustering
Algorithm

Find a meaningful
grouping of the
data points



Clustering

An unsupervised machine learning technique
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Clustering

 Using only data points without class information
 Goal: find meaningful groupings
 Assumption: closeness in feature space indicates similarity

 Example: k-means
1) Pick k random points as 

initial cluster centers

2) Assign each data point to 
the closest cluster center

3) Recalculate cluster centers: 
midpoint of assigned data points

4) Repeat until nothing changes

 Problems: not incremental, fixed number of clusters

http://shabal.in/visuals/kmeans/6.html
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What we need

 Wish list:
 Incremental (stream of observations)
 Semi-supervised (take into account scarce feedback)
 Unknown number of clusters
 Fuzzy
 Hierarchical

 Good news: some approaches seem (partially) fitting!

 Bad news: none of them fits perfectly!

 → I will probably need to combine different approaches
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My overall idea

Conceptual Space

Abstract Symbols

Deep Rep. 
Learning

                

feature   vectors

Perception

extracted  concepts

Clustering
Algorithm

Find a meaningful
grouping of the
data points

Language 
Games

Feedback about
usefulness of
concepts



Language Games

Grounding concepts in communication

[Steels2015]
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Is there more grounding needed?

 Concepts are already grounded in perception

 … but there are many ways in which the conceptual space 
can be divided up into concepts

 Still, humans seem to share their concepts (otherwise we 
could not communicate)

 Idea: use of concepts in communication gives further 
constraints
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Language games

http://shop.labbe.de/bastel-basics/stifte-kreiden/prime-jumbo.html

Speaker Hearer

WorldGoal Action

Concept Concept

Word Word
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Why is this interesting?

 Principled way of creating symbols from perception

 Thorough mathematical formalization of the conceptual 
spaces framework (submitted to IJCAI-17)

 Combine language games with cognitive framework

 New type of clustering algorithm

 Learning in conceptual spaces
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What have I done so far?

 Remember: Euclidean and Manhattan betweenness

 Convex region C:
 For all points x,y є C and for all z between x and y: z є C

 Star-shaped region S:
 Central point p є S, for all z between p and y є S: z є S

https://en.wikipedia.org/wiki/Convex_set#/media/
File:Convex_polygon_illustration2.svg

p
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What have I done so far?

height

age

adults

ch
ild

re
n

→ use star-shaped sets as basis for a formalization
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What have I done so far?
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Summary

 There are many possible applications of this theory

Symbolic Layer

Subsymbolic Layer     [0.42; -1.337]

∀ x :apple(x )⇒ red (x)

?Conceptual Space



Thank you for your attention!

Questions? Comments? Discussions?

https://www.lucas-bechberger.de
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