

Conceptual Spaces

A geometric framework for representing concepts

Lucas Bechberger

OSNABRÜCK What is it all about?

- If a computer has the following entry in its knowledge base: $\forall x: apple(x) \Rightarrow red(x)$
- Does it know what "red" means?
- Does it know what "apple" means?
- Most likely not!
 - For a computer "red" is just an arbitrary symbol

 $\forall x: klj8(x) \Rightarrow 42x8e45(x)$

- "Symbol grounding problem" [Harnad1990]:
 - How can abstract symbols contain any meaning?
 - They need to be grounded in reality

The different layers of representation

OSNABRÜCK

OSNABRÜCK Conceptual spaces in a nutshell

- High-dimensional space [Gärdenfors2000]
 - Dimensions represent measurable qualities
 - Concepts are convex regions in this space

Conceptual Spaces

THE GEOMETRY OF MEANING SEMANTICS BASED ON CONCEPTUAL SPACES PETER GÅRDENFORS

Dimensions & Domains

- Quality dimensions
 - Different ways stimuli are judged to be similar or different
 - E.g., temperature, weight, brightness, pitch
- Domain
 - Set of integral dimensions that are separable from all other dimensions
 - Color: hue, saturation, and brightness
- Distance in this space is inversely related to similarity
 - Integral dimensions \rightarrow Euclidean distance (length of line segment)
 - Separable dimensions \rightarrow Manhattan distance (sum of distances)

IVERSITÄT OSNABRÜCK Euclidean vs Manhattan distance

Euclidean Distance

Manhattan Distance

d_M

Euclidean Betweenness

Manhattan Betweenness

Conceptual Spaces / Lucas Bechberger

OSNABRÜCK Example: the color domain

https://en.wikipedia.org/wiki/HSL_and_HSV#/media/File:HSL_color_solid_dblcone_chroma_gray.png

NIVERSITÄT OSNABRÜCK Properties

- Look at one domain (e.g., color)
 - Regions correspond to properties (e.g., red)
 - Properties are mostly expressed by adjectives
- Criterion P:
 - A natural property is a convex region of a domain in a conceptual space.

OSNABRÜCK Example: the color domain

https://en.wikipedia.org/wiki/HSL_and_HSV#/media/File:HSL_color_solid_dblcone_chroma_gray.png

Connection to prototype theory

- Prototype theory of concepts
 - Each concept is mentally represented by a prototype
 - Prototype = abstract summary representation
 - E.g., average instance
 - Categorization: compare stimulus to all prototypes
 - → best match wins

- Conceptual spaces
 - Each concept is represented by a convex region
 - Central point of this region can be interpreted as prototype

OSNABRÜCK Connection to prototype theory

- Voronoi tessellation
 - Given a set of central points {p₁, ..., p_n}
 - Assign each point in the space to its closest p_i

https://commons.wikimedia.org/wiki/File:CentroidalVoronoiTessellation2.png

Set of prototype points generates convex sets

- Example: "apple"
 - Color: red
 - Shape: spherical
 - Texture: smooth
 - Taste: sweet
- Defined across multiple domains: combination of properties
 - Different "importance" to the concept (influenced by context)
 - Potentially correlated
- Criterion C:
 - A natural concept is represented as a set of convex regions in a number of domains together with an assignment of salience weights to the domains and information about how the regions in different domains are correlated.

SITÄT OSNABRÜCK Conceptual Spaces

- Start with a set of dimensions
- Group them into domains
- Properties = convex regions within a single domain
- Concepts span multiple domains
 - Salience values and correlation information

Applications of Conceptual Spaces

The Framework in Action

OSNABRÜCK Semantic grounding of word classes

- Adjectives refer to properties
 - "red", "tall", "round", "sweet" all refer to single domains
- Nouns refer to concepts
 - "apple", "dog", "tree" are based on a combination of domains
- Verbs refer to actions
 - "push", "walk", "bend" refer to the force domain
- Prepositions refer to the spatial domain
 - "above", "into", "across" refer to positions and paths with respect to a landmark

Concept combination

"green banana"

OSNABRÜCK

- green is compatible with with banana's color information
- Narrow down the color region
- Correlations between domains yield further updates:
 - Consistency is solid
 - Taste is bitter
- "pink elephant"
 - **pink** is incompatible with **elephant**'s color information
 - Replace the color information
- "stone lion"
 - *stone* is incompatible with most domains of *lion* (e.g. life span, habitat)
 - Compatible domains: shape, size, and color
 - Remove incompatible domains, keep compatible ones

OSNABRÜCK Representing composite concepts

- Typically, objects consist of multiple parts
 - Apple: seeds, stem, flesh, skin

UNIVERSITÄT

Idea: represent parts & their relations

Conceptual Spaces / Lucas Bechberger

Anchoring in robotics

Symbol system

OSNABRÜCK

- Symbols ("cup-22")
- Predicates ("blue")
- g: predicates → areas
- Sensor system
 - Takes measurements at each time step
 - h: measurements \rightarrow points
- Anchor
 - α : time \rightarrow symbols x points
 - Ties symbols to observations
 - Needs to be updated

RRSITÄT OSNABRÜCK Plausible reasoning

- Interpolative reasoning
 - Bachelor students are exempt from paying council tax in the UK
 - PhD students are exempt from paying council tax in the UK
 - What about Master students?
- Similarity and betweenness are important

- Derive conceptual space from textual data (word vectors)
- Find interpretable dimensions in this space
- Some example results:
 - "wine shop" is between "gourmet shop" and "liquor store"
 - Difference between "Jurassic Park" and "Kill Bill: Vol. 1":
 - "dinosaurs", "the expedition", "the scientist"

[Derrac2015]

Concept Formation in Conceptual Spaces

My PhD research

OSNABRÜCK What's missing?

- How can concepts be "discovered"?
 - Theory tells us how to deal with a set of labeled data points...

OSNABRÜCK What's missing?

- How can concepts be "discovered"?
 - Theory tells us how to deal with a set of labeled data points...
 - ... but not how to deal with a stream of unlabeled data points!

My overall idea

OSNABRÜCK

Deep (Representation) Learning

A neurally inspired machine learning technique

[Bengio2014]

UNIVERSITÄT OSNABRÜCK Deep Representation Learning

Inspired by biological neurons

- Error = computed output expected output
- Backpropagation: Adjust weights based on error gradient

Deep Representation Learning

- Artificial Neural Network: combine many artificial neurons
- Autoencoder: compress and reconstruct input

Hidden neurons = dimensions in our conceptual space

My overall idea

OSNABRÜ<u>CK</u>

Fuzziness

The world is not black and white

[Zadeh1965]

- When is a person "tall"?
 1,80 m?
 1,79 m?
 1,78 m?
 ...
 0,00 m?!
- Every threshold is somewhat arbitrary
- Also applies to other concepts (e.g., "red")
- One solution: degrees of membership \rightarrow fuzzy sets
 - Imprecise boundaries

My overall idea

OSNABRÜCK

Clustering

An unsupervised machine learning technique

OSNABRÜCK Clustering

- Using only data points without class information
- Goal: find meaningful groupings
- Assumption: closeness in feature space indicates similarity
- Example: k-means
 - 1) Pick k random points as initial cluster centers
 - 2) Assign each data point to the closest cluster center
 - Recalculate cluster centers: midpoint of assigned data points
 - 4) Repeat until nothing changes

http://shabal.in/visuals/kmeans/6.html

Problems: not incremental, fixed number of clusters

OSNABRÜCK What we need

- Wish list:
 - Incremental (stream of observations)
 - Semi-supervised (take into account scarce feedback)
 - Unknown number of clusters
 - Fuzzy
 - Hierarchical
- Good news: some approaches seem (partially) fitting!
- Bad news: none of them fits perfectly!
- \rightarrow I will probably need to combine different approaches

My overall idea

OSNABRÜ<u>CK</u>

Language Games

Grounding concepts in communication

[Steels2015]

NIVERSITÄT OSNABRÜCK Is there more grounding needed?

- Concepts are already grounded in perception
- ... but there are many ways in which the conceptual space can be divided up into concepts
- Still, humans seem to share their concepts (otherwise we could not communicate)
- Idea: use of concepts in communication gives further constraints

Language games

http://shop.labbe.de/bastel-basics/stifte-kreiden/prime-jumbo.html

OSNABRÜCK

My overall idea

OSNABRÜ<u>CK</u>

OSNABRÜCK Why is this interesting?

- Principled way of creating symbols from perception
- Thorough mathematical formalization of the conceptual spaces framework (submitted to IJCAI-17)
- Combine language games with cognitive framework
- New type of clustering algorithm
- Learning in conceptual spaces

OSNABRÜCK What have I done so far?

Remember: Euclidean and Manhattan betweenness

https://en.wikipedia.org/wiki/Convex_set#/media/ File:Convex_polygon_illustration2.svg

- Convex region C:
 - For all points x,y ext{ C} and for all z between x and y: z ext{ C}
- Star-shaped region S:
 - Central point p ext{ S}, for all z between p and y ext{ S}: z ext{ S}

OSNABRÜCK What have I done so far?

height

UNIVERSITÄT

age

adults

\rightarrow use star-shaped sets as basis for a formalization

OSNABRÜCK What have I done so far?

NIVERSITÄT OSNABRÜCK Summary

There are many possible applications of this theory

Thank you for your attention!

Questions? Comments? Discussions?

https://www.lucas-bechberger.de

- [Harnad1990]
 - S. Harnad, "The Symbol Grounding Problem", Physica D: Nonlinear Phenomena, 1990
- [Gärdenfors2000]
 - P. Gärdenfors, "Conceptual Spaces: The Geometry of Thought", MIT press, 2000
- [Gärdenfors2014]
 - P. Gärdenfors, "The Geometry of Meaning: Semantics Based on Conceptual Spaces", MIT Press, 2014
- [Fiorini2013]
 - S. Fiorini, P. Gärdenfors, and M. Abel, "Representing Part-Whole Relations in Conceptual Spaces", Cognitive Processing, 2013
- [Chella2004]
 - A. Chella, S. Coradeschi, M. Frixione, and A. Saffotti, "Perceptual Anchoring via Conceptual Spaces", 2004

OSNABRÜCK References

- [Derrac2015]
 - J. Derrac and S. Schockaert, "Inducing Semantic Relations from Conceptual Spaces: A Data-Driven Approach to Plausible Reasoning", Artificial Intelligence, 2015
- [Bengio2014]
 - Y. Bengio, A. Courville, and P. Vincent: "Representation Learning: A Review and New Perspectives", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013
- [Zadeh1965]
 - L. Zadeh, "Fuzzy sets" Information and control, 1965
- [Baraldi1997]
 - A. Baraldi and F. Parmiggiani, "Novel Neural Network Model Combining Radial Basis Function, Competitive Hebbian Learning Rule, and Fuzzy Simplified Adaptive Resonance Theory", Applications of Soft Computing, 1997
- [Steels2015]
 - Luc Steels, "The Talking Heads experiment: Origins of words and meanings", Language Science Press, 2015