Appendix to "A Thorough Formalization of Conceptual Spaces"

Lucas Bechberger and Kai-Uwe Kühnberger Institute of Cognitive Science, Osnabrück University lucas.bechberger@uni-osnabrueck.de kai-uwe.kuehnberger@uni-osnabrueck.de

Abstract

This appendix provides mathematical proofs for the propositions made in the paper "A Thorough Formalization of Conceptual Spaces" by Lucas Bechberger and Kai-Uwe Kühnberger [1].

1 Fuzzy Simple Star-Shaped Sets

Proposition 1. Any fuzzy simple star-shaped set $\widetilde{S} = \langle S, \mu_0, c, W \rangle$ as defined in [1] is star-shaped with respect to $P = \bigcap_{i=1}^m C_i$ under $d_C^{\Delta_S}$.

Proof. As $\mu_{\widetilde{S}}(x)$ is inversely related to the distance of x to S, any \widetilde{S}^{α} with $\alpha \leq \mu_0$ is equivalent to an ϵ -neighborhood of S under $d_C^{\Delta_S}$ (cf. Figure 1). We can define the ϵ -neighborhood of a cuboid C_i under $d_C^{\Delta_S}$ as

$$C_i^{\epsilon} = \{ z \in CS \mid \forall d \in D_S : p_{id}^- - u_d \le z_d \le p_{id}^+ + u_d \}$$

where u represents the difference between $x \in C_i$ and $z \in C_i^{\epsilon}$. Thus, u must fulfill the following constraints:

$$\sum_{\delta \in \Delta_S} w_\delta \cdot \sqrt{\sum_{d \in \delta} w_d \cdot (u_d)^2} \le \epsilon \quad \land \quad \forall d \in D_S : u_d \ge 0$$

Let now $x \in C_i, z \in C_i^{\epsilon}$.

$$\forall d \in D_S: \ x_d = p_{id}^- + a_d \text{ with } a_d \in [0, p_{id}^+ - p_{id}^-]$$
$$z_d = p_{id}^- + b_d \text{ with } b_d \in [-u_d, p_{id}^+ - p_{id}^- + u_d]$$

We know that a point $y \in CS$ is between x and z with respect to $d_C^{\Delta_S}$ if the following condition is true:

$$\begin{split} d_C^{\Delta_S}(x,y,W) + d_C^{\Delta_S}(y,z,W) &= d_C^{\Delta_S}(x,z,W) \\ \iff \forall \delta \in \Delta_S : d_E^{\delta}(x,y,W_{\delta}) + d_E^{\delta}(y,z,W_{\delta}) &= d_E^{\delta}(x,z,W_{\delta}) \\ \iff \forall \delta \in \Delta_S : \exists t \in [0,1] : \forall d \in \delta : y_d = t \cdot x_d + (1-t) \cdot z_d \end{split}$$

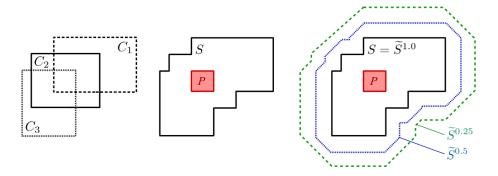


Figure 1: Left: Three cuboids C_1, C_2, C_3 with nonempty intersection. Middle: Resulting simple star-shaped set S based on these cuboids. Right: Fuzzy simple star-shaped set \tilde{S} based on S with three α -cuts for $\alpha \in \{1.0, 0.5, 0.25\}$.

The first equivalence holds because $d_C^{\Delta_S}$ is a weighted sum of Euclidean metrics d_E^{δ} . As the weights are fixed and as the Euclidean metric is a metric obeying the triangle inequality, the equation with respect to $d_C^{\Delta_S}$ can only hold if the equation with respect to d_E^{δ} holds for all $\delta \in \Delta$.

We can thus write the components of y like this:

$$\forall d \in D_S : \exists t \in [0,1] : y_d = t \cdot x_d + (1-t) \cdot z_d = t \cdot (p_{id}^- + a_d) + (1-t)(p_{id}^- + b_d)$$
$$= p_{id}^- + t \cdot a_d + (1-t) \cdot b_d = p_{id}^- + c_d$$

As $c_d = t \cdot a_d + (1-t) \cdot b_d \in [-u_d, p_{id}^+ - p_{id}^- + u_d]$, it follows that $y \in C_i^{\epsilon}$. So C_i^{ϵ} is star-shaped with respect to C_i under $d_C^{\Delta_S}$. More specifically, C_i^{ϵ} is also star-shaped with respect to P under $d_C^{\Delta_S}$. Therefore, $S^{\epsilon} = \bigcup_{i=1}^m C_i^{\epsilon}$ is star-shaped under $d_C^{\Delta_S}$ with respect to P.

2 Union of Fuzzy Simple Star-Shaped Sets

Proposition 2. Let $\widetilde{S}_1 = \langle S_1, \mu_0^{(1)}, c^{(1)}, W^{(1)} \rangle$ and $\widetilde{S}_2 = \langle S_2, \mu_0^{(2)}, c^{(2)}, W^{(2)} \rangle$ be two fuzzy simple star-shaped sets as defined in [1]. If we assume that $\Delta_{S_1} = \Delta_{S_2}$ and $W^{(1)} = W^{(2)}$, then $\widetilde{S}_1 \cup \widetilde{S}_2 \subseteq U(\widetilde{S}_1, \widetilde{S}_2) = \widetilde{S}'$.

Proof. As both $\Delta_1 = \Delta_2$ and $W^{(1)} = W^{(2)}$, we know that

$$d(x,y) := d_C^{\Delta_{S_1}}(x,y,W^{(1)}) = d_C^{\Delta_{S_2}}(x,y,W^{(2)}) = d_C^{\Delta_{S'}}(x,y,W')$$

Moreover, $S_1 \cup S_2 \subseteq S'$. Therefore:

$$\begin{split} \mu_{\widetilde{S}_1 \cup \widetilde{S}_2}(x) &= \max(\mu_{\widetilde{S}_1}(x), \mu_{\widetilde{S}_2}(x)) \\ &= \max(\max_{y \in S_1} \mu_0^{(1)} \cdot e^{-c^{(1)} \cdot d(x,y)}, \max_{y \in S_2} \mu_0^{(2)} \cdot e^{-c^{(2)} \cdot d(x,y)}) \\ &\leq \mu_0' \cdot \max(e^{-c^{(1)} \cdot \min_{y \in S_1} d(x,y)}, e^{-c^{(2)} \cdot \min_{y \in S_2} d(x,y)}) \\ &\leq \mu_0' \cdot e^{-c' \cdot \min(\min_{y \in S_1} d(x,y), \min_{y \in S_2} d(x,y))} \\ &\leq \mu_0' \cdot e^{-c' \cdot \min_{y \in S'} d(x,y)} = \mu_{\widetilde{S}'}(x) \end{split}$$

3 Intersection of Projections to Subspaces

Proposition 3. Let $\widetilde{S} = \langle S, \mu_0, c, W \rangle$ be a fuzzy simple star-shaped set as defined in [1]. Let $\widetilde{S}_1 = P(\widetilde{S}, \Delta_1)$ and $\widetilde{S}_2 = P(\widetilde{S}, \Delta_2)$ with $\Delta_1 \cup \Delta_2 = \Delta_S$ and $\Delta_1 \cap \Delta_2 = \emptyset$. Let $\widetilde{S}' = I(\widetilde{S}_1, \widetilde{S}_2)$ as described in Section 4.1 of [1]. If $\sum_{\delta \in \Delta_1} w_{\delta} = |\Delta_1|$ and $\sum_{\delta \in \Delta_2} w_{\delta} = |\Delta_2|$, then $\widetilde{S} \subseteq \widetilde{S}'$.

Proof. We already know that $S \subseteq I(P(S, \Delta_1), P(S, \Delta_2)) = S'$. Moreover, one can easily see that $\mu'_0 = \mu_0$ and c' = c.

$$\mu_{\widetilde{S}}(x) = \max_{y \in S} \mu_0 \cdot e^{-c \cdot d_C^{\Delta_S}(x, y, W)} \stackrel{!}{\leq} \max_{\substack{y \in \\ I(P(S, \Delta_1), P(S, \Delta_2))}} \mu'_0 \cdot e^{-c' \cdot d_C^{\Delta_S}(x, y, W')} = \mu_{\widetilde{S}'}(x)$$

This holds if and only if W = W'. $W^{(1)}$ only contains weights for Δ_1 , whereas $W^{(2)}$ only contains weights for Δ_2 . As $\sum_{\delta \in \Delta_i} w_{\delta} = |\Delta_i|$ (for $i \in \{1, 2\}$), the weights are not changed during the projection. As $\Delta_1 \cap \Delta_2 = \emptyset$, they are also not changed during the intersection, so W' = W.

References

[1] Lucas Bechberger and Kai-Uwe Kühnberger. A Thorough Formalization of Conceptual Spaces for Machine Learning and Reasoning. In *Proceedings of the 40th German Conference on Artificial Intelligence*, in press.