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Abstract

This appendix provides a mathematical proof for the formula describ-
ing the hypervolume of a hyperball in a conceptual space (Proposition
1 in the paper “Measuring Relations Between Concepts In Conceptual
Spaces” by Lucas Bechberger and Kai-Uwe Kiihnberger [1]).

1 Hyperballs under the Unweighted Metric

In general, a hyperball of radius r around a point p can be defined as the set of
all points with a distance of at most r to p:

H={zeCS|d(x,p) <r}

If the Euclidean distance dg is used, this corresponds to our intuitive notion
of a ball — a round shape centered at p. However, under the Manhattan distance
dpr, hyperballs have the shape of diamonds. Under the combined distance dé‘,
a hyperball in three dimensions has the shape of a double cone (cf. Figure 1).

As similarity is inversely related to distance, one can interpret a hyperball
in a conceptual space as the set of all points that have a minimal similarity o
to the central point p, where a depends on the radius of the hyperball.

In this section, we assume an unweighted version of d5:

dg(x,y) = [ |va—yal?

deA | ded

In order to derive a formula for the hypervolume of a hyperball under dé,
we need to use the following three lemmatas:
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Figure 1: Left: Two-dimensional hyperball under the Euclidean metric. Mid-
dle: Two-dimensional hyperball under the Manhattan metric. Right: Three-
dimensional hyperball under the combined metric (with domain structure A =

{01 = {d1,da}, 02 = {d3}}).

Lemma 1.
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where T'(+) is Euler’s Gamma function and n € N.
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We can now use the definition of the Beta function, which is
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Using y = %, we get:
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Next, we use the identity B(z,y) = % with Euler’s Gamma function T’

and the fact that I'(1) = /7. We get:

Lemma 2. For any natural number 57 > 0 and any a,b € R, the following
equation holds:

Szt =\
/ 97 ~<T‘—ZTZ> drj = B(a,b+1 '(T—Zﬁ)
0 i=1

Proof. We can make a variable change by defining r; = (r — z 1 m) -z which
gives dr; = (r — Zl 1 7’1) -dz. This gives us:
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The last transformation uses the fact that B(x,y) = fol >t —t)v=tat. O

Lemma 3. For an% natural number k > 0, any r1,...,7k,N1,...,nk > 0,
k 3
= oM, T =T the following equation holds:
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Proof. Using Lemma 2, we can solve the innermost integral by setting j = k,a =
n
ng, b = 0, which gives us B(ng, 1) - (r - Zf;ll ri) . Therefore:
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As one can see, we can again apply Lemma 2 to the innermost integral. Re-
peatedly applying Lemma 2 finally results in:

I =B(ng,1)- B(ng_1,np +1) -+ B(ny,ng + -+ +ng + 1) - ¢t

We use that B(z,y) = Plf?zi(y%) in order to rewrite this equation:

L(ne)l'(1) DPlng—1)l'(ne +1)  P(ny)l(ng +--- + 1 +1)

J = pratotne
F(nk + 1) F(nk_l +ng + 1) F(’I’Ll +ng+ -4+ ng + 1)

Because I'(1) = 1 and because most of the terms cancel out, this reduces to:

1 r? K
= Fni
F(ny+---+ng +1) F(n+1)£[1 (ni)

I =Mt Ping) .- T(ng) -

O

Using these three lemata, we can now derive the size of a hyperball in a
conceptual space without domain and dimension weights:

Lemma 4. The hypervolume of a hyperball with radius r in a space with the
unweighted combined metric dé and the domain structure A can be computed
in the following way, where n is the overall number of dimensions and ng is the
number of dimensions in domain §:

Vir,A) = o} H (m!W)

Tsen

Proof. The hyperball can be defined as the set of all points that have a distance
of maximally r to the origin, i.e.,

H={recs|dd@0n =3 [Y<r}

deA \ ded

If we define V6 € A : rs := /> o5 @3, we can easily see that Y 5., 75 < 7.

The term 75 can be interpreted as the distance between z and the origin within
the domain §. The constraint ) ;. rs < r then simply means that the sum of
domain-wise distances is less than the given radius. One can thus interpret rs
as the radius within domain 9.

We would ultimately like to compute

V(T,A):/~-~/HldH

This integration becomes much easier if we use spherical coordinates instead of
the Cartesian coordinates provided by our conceptual space.



Let us first consider the case of a single domain § of size n. A single domain
corresponds to a standard Euclidean space, therefore we can use the standard
procedure of changing to spherical coordinates (cf., e.g., [2]). Let us index the
dimensions of § as di,...,d,. The coordinate change within the domain § then
looks like this:

x1 =1 - cos(¢r)
X9 =t -sin(¢1) - cos(pa)

Tp—1 =t-sin(¢1)---sin(P,—_2) - cos(dn_1)
Ty =1 -sin(Py) - - - sin(¢p—2) - sin(dn_1)

In order to switch the integral to spherical coordinates, we need to calucalate
the volume element. This can be found by looking at the determinant of the
transformation’s Jacobian matrix. The Jacobian matrix of the transformation
of a single domain § can be written as follows:

[ r2 o1 Sz
ot o1 e Opn—1
53’,'2 6%2 (51)2
J§ _ (;-t 5%’1 T 5‘157?71 —
0Ty, 0T, 0Ty
ot dp1 o Opn—1
cos(¢1) —tsin(pq) 0 0 0
sin(¢q) cos(¢2) tcos(éy) cos(dg)  —tsin(eq)sin(dg) 0 0
sin(¢q) - - - sin(dy, o) cos(dy_1) o L L —tsin(é1) - sin(dp_o) sin(y_1)
sin(¢q) - - - sin(¢y _9) sin(py 1) tsin(¢py) - - - sin(éy, o) cos(dy, 1)

The determinant of this matrix can be computed like this:
det(Js) =t""1 - sin" "2 (¢y) - sin™ 3 (¢hg) - - - sin(pp—_2)

We can now perform the overall switch from Cartesian to spherical coordinates
by performing this coordinate change for each domain individually. Let us index
the Cartesian coordinates of a point = in domain § by s 1,...,%sn,. Let us
further index the spherical coordinates of domain § by 75 and ¢s.1, ..., Psns—1-
Let k = |A| denote the total number of domains.

Because x5 ; is defined independently from 75/ and ¢s ;- for different domains

0 # §', any derivative 3%’ or ;é‘fj - will be zero. If we apply the coordinate change
J

to all domains at once, the Jacobian matrix of the overall transformation has
therefore the structure of a block matrix:

J 0 ... 0
0 Jy ... 0
J = . . .
0 0 ... Jg



The blocks on the diagonal are the Jacobian matrices of the individual do-
mains as defined above, and all other blocks are filled with zeroes because all
cross-domain derivatives are zero. Because the overall J is a block matrix, we
get that det(J) = [[5ca det(Js) (cf. [4]). Our overall volume element is thus

det(J) = H det(Js) = H T sin™ "2 (s 1) sin™ "3 (s ) - - sin( s g —2)

dEA dEA

The limits of the angle integrals are [0, 27] for the outermost and [0, 7] for
all other integrals. Based on our constraint ) 5., 7s < r, we can derive the
limits for the integrals over the rs as follows, assuming an arbitrarily ordered
indexing d1, ..., d; of the domains:

T € [0,7“}
ro € [0,r — 1]
r3 € [0,7r —ry — 2]

E

-1
rp € [0, — i

=1

The overall coordinate change therefore looks like this:
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By applying Lemma 1 and Lemma 3, we can write this as:
s ' T’ i
Vir,A)=|2- ... |2. . I'(n;
(r,4) (%) (%) F(n+1)£[1 (ni)

We can simplify this formula further by using the identity ¥n € N: I'(n+1) = n!
and the rewrite H?:o =]Isea:
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2 Hyperballs under the Weighted Metric

We now generalize our results from the previous section from the unweighted to
the weighted combined metric d5.

Proposition 1. The hypervolume of a hyperball with radius v in a space with
the weighted combined metric dé, the domain structure A, and the set of weights
W can be computed by the following formula, where n is the overall number of
dimensions and ng is the number of dimension in domain 6:

ns

1 ,r’ﬂ T
ViAW) = C— ns! s =
( ! [Tseaws - [laes vwa n! 11 ( ° F(;+1)>
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Proof. As Gérdenfors has already argued in [3], putting weights on dimensions in
a conceptual space is equivalent to stretching each dimension of the unweighted
space by the weight assigned to it.

If the overall radius of a ball is r, and some dimension has the weight w,
then the farthest away any point x can be from the origin on this dimension
must satisfy w -z = r, i.e., v = . That is, the ball needs to be stretched by a
factor % in the given dimension, thus its hypervolume also changes by a factor
of % A hyperball under the weighted metric is thus equivalent to a hyperellipse
under the unweighted metric.

In our case, the weight for any dimension d within a domain § corresponds
to ws - y/wgq: If we look at a point x with coordinates (0,...,0,z4,0,...,0), then
d(0,z) = ws - \/wa - ¥4 = w; - VWq - xq (with § being the domain to which the

dimension d belongs). If we multiply the size of the hyperball by wai/wfd for

each dimension d, we get:

1
V(ir,A,W) = Vir, A
r ) HéeA Hdeé Ws+/Wq r.2)

! " 11 (s %t
- T N =
Hsea aeswsvwa nt ey (s +1)

This is the hypervolume of a hyperball under the weighted combined metric. [
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