Last time, I have shared the first results obtained by the LTN on the conceptual space of movies. Today, I want to give you a quick update on the first membership function variant that I have investigated.
Category: LTN
Applying Logic Tensor Networks (Part 4)
After having already written a lot about Logic Tensor Networks, today I will finally share some first results of how they perform in a multi-label classification task on the conceptual space of movies.
Applying Logic Tensor Networks (Part 3)
Last time, I have introduced the evaluation metrics used for the LTN classification task. Today, I will show some first results of the k nearest neighbor (kNN) classifier which will serve as a baseline for our LTN results.
Applying Logic Tensor Networks (Part 2)
In my last LTN blog post, I introduced the overall setting of my experiment. Before I can report on first results, I want and need to describe how we can evaluate the performance of the classifiers in this multi-label classification setting. This is what I’m going to do today.
Applying Logic Tensor Networks (Part 1)
In previous blog posts I have already talked about Logic Tensor Networks in general, their relation to Conceptual Spaces, and several additional membership functions that are in line with the Conceptual Spaces framework. As I already mentioned before, I want to apply them in a “proof of concept” scenario. Today I’m going to sketch this scenario in more detail.