A hybrid way for obtaining the dimensions of a conceptual space (Part 2)

Last time, I gave a rough outline of a hybrid approach for obtaining the dimensions of a conceptual space that uses both multidimensional scaling (MDS) and artificial neural networks (ANNs) [1]. Today, I will show our first results (which we will present next week at the AIC workshop in Palermo).

Continue reading “A hybrid way for obtaining the dimensions of a conceptual space (Part 2)”

A hybrid way for obtaining the dimensions of a conceptual space (Part 1)

In earlier blog posts, I have already talked about two ways of obtaining the dimensions of a conceptual space: Neural networks such as InfoGAN on the one hand and multidimensional scaling (MDS) on the other hand. Over the past few months, in a collaboration with Elektra Kypridemou, I have worked on a way of combining these two approaches. Today, I would like to give a quick overview of our recent proposal [1].

Continue reading “A hybrid way for obtaining the dimensions of a conceptual space (Part 1)”

What is “Multidimensional Scaling”?

I’ve already talked about how to potentially obtain the dimensions of a conceptual space with artificial neural networks in a previous blog post. That approach is based on machine learning techniques, but there’s also a more traditional way of extracting a conceptual space: Conducting a psychological experiment and using a type of algorithm called “multidimensional scaling”. Today, I would like to give a quick overview of this approach.

Continue reading “What is “Multidimensional Scaling”?”

What is “Constructive Alignment” and why do we need it?

Over the past few weeks, I have been pretty busy fulfilling my teaching duties. As I haven’t done much researching, I won’t talk about research today, but about “Constructive Alignment”, which is an approach for planning lectures, seminars and other courses.

The constructive alignment process consists of three steps:

  1. Defining the learning targets
  2. Planning the examination
  3. Planning the course

But wait a second, why does planning the course appear as the last step in this process?

Continue reading “What is “Constructive Alignment” and why do we need it?”

Extending Logic Tensor Networks (Part 2)

A while ago, I introduced Logic Tensor Networks (LTNs) and argued that they are nicely applicable in a conceptual spaces scenario. In one of my recent posts, I described how to ensure that an LTN can only learn convex concepts. Today, I will take this one step further by introducing additional ways of defining the membership function of an LTN.

Continue reading “Extending Logic Tensor Networks (Part 2)”