In my last LTN blog post, I introduced the overall setting of my experiment. Before I can report on first results, I want and need to describe how we can evaluate the performance of the classifiers in this multi-label classification setting. This is what I’m going to do today.

# Category: PhD

## Applying Logic Tensor Networks (Part 1)

In previous blog posts I have already talked about Logic Tensor Networks in general, their relation to Conceptual Spaces, and several additional membership functions that are in line with the Conceptual Spaces framework. As I already mentioned before, I want to apply them in a “proof of concept” scenario. Today I’m going to sketch this scenario in more detail.

## A hybrid way for obtaining the dimensions of a conceptual space (Part 2)

Last time, I gave a rough outline of a hybrid approach for obtaining the dimensions of a conceptual space that uses both multidimensional scaling (MDS) and artificial neural networks (ANNs) [1]. Today, I will show our first results (which we will present next week at the AIC workshop in Palermo).

Continue reading “A hybrid way for obtaining the dimensions of a conceptual space (Part 2)”

## A hybrid way for obtaining the dimensions of a conceptual space (Part 1)

In earlier blog posts, I have already talked about two ways of obtaining the dimensions of a conceptual space: Neural networks such as InfoGAN on the one hand and multidimensional scaling (MDS) on the other hand. Over the past few months, in a collaboration with Elektra Kypridemou, I have worked on a way of combining these two approaches. Today, I would like to give a quick overview of our recent proposal [1].

Continue reading “A hybrid way for obtaining the dimensions of a conceptual space (Part 1)”

## Extending Logic Tensor Networks (Part 2)

A while ago, I introduced Logic Tensor Networks (LTNs) and argued that they are nicely applicable in a conceptual spaces scenario. In one of my recent posts, I described how to ensure that an LTN can only learn convex concepts. Today, I will take this one step further by introducing additional ways of defining the membership function of an LTN.