What is “Multidimensional Scaling”?

I’ve already talked about how to potentially obtain the dimensions of a conceptual space with artificial neural networks in a previous blog post. That approach is based on machine learning techniques, but there’s also a more traditional way of extracting a conceptual space: Conducting a psychological experiment and using a type of algorithm called “multidimensional scaling”. Today, I would like to give a quick overview of this approach.

Continue reading “What is “Multidimensional Scaling”?”

Extending Logic Tensor Networks (Part 2)

A while ago, I introduced Logic Tensor Networks (LTNs) and argued that they are nicely applicable in a conceptual spaces scenario. In one of my recent posts, I described how to ensure that an LTN can only learn convex concepts. Today, I will take this one step further by introducing additional ways of defining the membership function of an LTN.

Continue reading “Extending Logic Tensor Networks (Part 2)”

Some progress with InfoGAN

I’ve recently shared my first (and unfortunately relatively disappointing) results of applying InfoGAN [1] to simple shapes. Over the past weeks, I’ve continued to work on this, and my results are starting to look more promising. Today, I’m going to share the current state of my research.

Continue reading “Some progress with InfoGAN”

Staying up to date with current research

Based on Howard’s comment on my last blog post, I will today give an overview of how I try to stay up to date with current research in the AI and Conceptual Spaces area. What are conferences, workshops, mailing lists, etc. that I think are relevant?

Continue reading “Staying up to date with current research”

Logic Tensor Networks and Conceptual Spaces

In my last blog post, I have introduced the general idea of Logic Tensor Networks (or LTNs, for short). Today I would like to talk about how LTNs and conceptual spaces can potentially fit together and  about the concrete strands of research I plan to pursue.

Continue reading “Logic Tensor Networks and Conceptual Spaces”