Based on Howard’s comment on my last blog post, I will today give an overview of how I try to stay up to date with current research in the AI and Conceptual Spaces area. What are conferences, workshops, mailing lists, etc. that I think are relevant?

# Category: PhD

## A summary of 2017

The year is coming to an end, Christmas is around the corner, and reviews of 2017’s events are popping up everywhere. I think this is a nice opportunity to also look back at the year 2017, to summarize what has happened in my academic life, and to speculate a bit about 2018.

###### Continue reading “A summary of 2017”

## Logic Tensor Networks and Conceptual Spaces

In my last blog post, I have introduced the general idea of Logic Tensor Networks (or LTNs, for short). Today I would like to talk about how LTNs and conceptual spaces can potentially fit together and about the concrete strands of research I plan to pursue.

Continue reading “Logic Tensor Networks and Conceptual Spaces”

## Relations between Concepts: Subsethood and Implication

It’s nice to have a mathematical definition of concepts in a conceptual space. It’s also nice that we can create new concepts based on old ones, for instance by intersecting them. But being able to talk about the relation of two concepts is certainly also useful. Last time, we talked about the size of a concept. We can use the size of concept to figure out that the concept of “animal” is more general than the concept of “Granny Smith” – simply because it is larger.

But there are also other ways of describing the relation of two concepts. Two of them, namely subsethood and implication, will be presented in today’s blog post.

Continue reading “Relations between Concepts: Subsethood and Implication”

## What’s the size of a concept?

A few weeks ago, I got the notification that my paper “Measuring Relations between Concepts in Conceptual Spaces” [1] (preprint available here) was accepted at the British SGAI Conference on Artificial Intelligence.

One of the question that I discuss there is posed in the title of this blog post: What’s the size of a concept?

In general, one can say that the size of a concept in a conceptual space tells you something about its specificity: Small concepts (like Granny Smith) are more specific, whereas large concepts (like fruit) are more general.

But how exactly can we measure the size of such a concept within my proposed formalization? My paper [1] gives a mathematical response to that, and today I would like to sketch the basic idea behind it.